-
多环芳烃 (polycyclic aromatic hydrocarbons,PAHs)是一类由2个及2个以上苯环组成的有机污染物,原型及其衍生物达400多种[1]。美国环保局(USEPA)将16种对人体健康危害较大的PAHs列入了优先控制污染物名单[2],其中苯并[a]芘(BaP)被确定为强致癌物质。
多环芳烃广泛分布在各种环境介质中。由于具有疏水性和亲脂性,PAHs在水中的溶解性较差,主要被悬浮颗粒物吸附,并可随悬浮颗粒物沉降至沉积物,沉积物中的PAHs经过解吸和再悬浮作用重新进入水体,成为新的污染源,同时通过生物积累和生物放大对生态系统和人体健康构成潜在危害。随着研究工作的广泛开展,不同类型地表水和沉积物中PAHs研究取得较大进展。我国对水体和沉积物中PAHs的研究主要集中在水库[3-4]、河流[5-7]、湖泊[8-10]、江海[11]及地下河[12]等,积累了大量数据;浅层地下水中PAHs的研究较少,主要集中在江苏[13]、河北[14]、安徽[15]和河南[16];然而在我国广大农村地区,沟塘数量众多且分布广泛。2016—2018年在淮河流域5个区县调查显示,49.7%(1272/2559)的农村居民报告住宅周边有沟塘,而且报告沟塘水体质量较差,24.3%(622/2559)的沟塘有异味。我国尚未开展农村地区沟塘水和沉积物中PAHs水平及其对周边浅层地下水影响的研究。
本文选取地处河南省西平县的5个沟塘水、3个沉积物和21户居民家中的浅层地下水作为研究对象,在2016年8月采集浅层地下水、沟塘水及沉积物样品,测定16种PAHs(各多环芳烃化合物的缩写详见表1)的含量,分析PAHs的空间分布特征和组分特征,评价农村地区沟塘水对其周边浅层地下水的影响,评估沟塘水和沉积物的生态风险及浅层地下水的人群健康风险。
农村地区浅层地下水、沟塘水及沉积物中PAHs的污染特征及风险评价
Pollution characteristics and risk assessment of PAHs in the surface sediment, surrounding shallow groundwater and ditch pond water in rural areas
-
摘要: 用液相色谱法对河南省西平县某乡浅层地下水、沟塘水及沉积物样品中的多环芳烃(PAHs)进行了分析。结果表明,本研究中w(Bap)、TEQ(BaP)、∑7PAHs、高环PAHs占比依次为:沉积物>沟塘水>浅层地下水。浅层地下水、沟塘水及沉积物中PAHs有相似的来源,主要源于燃烧,并以生物质和煤炭燃烧为主;沟塘水对浅层地下水中PAHs的影响较大,距离沟塘越近,浅层地下水中PAHs含量越高。经饮水摄入浅层地下水中7种致癌PAHs的P95致癌风险在1.8×10−8—7.0×10−6之间,在6岁时为1.1×10−6,高于一般可接受的致癌风险水平(1×10−6),主要产生致癌风险的污染物为BaP和BaA;浅层地下水中PAHs的P95非致癌风险在6.1×10−4—1.9×10−2之间,HQ远小于1,为可接受水平. 4号沟塘水中PAHs处于高生态风险水平,对生态风险贡献最大的污染物是BaA,占40.7%。3号沟塘水中PAHs处于中等风险水平,对生态风险贡献最大的污染物是DBA和BaA,分别占36.9%和23.6%。所有沟塘沉积物的PAHs的生态风险已经具有一定程度的“临界效应”,需要采取相应的措施控制和削减沟塘沉积物和水体中PAHs的污染。Abstract: Polycyclic aromatic hydrocarbons (PAHs) in the surface sediment, surrounding shallow groundwater and ditch pond water in Xiping county, Henan province were analyzed by liquid chromatography. The results showed that, w(Bap), TEQ(BaP), ∑7PAHs and high molecular weight PAHs were successively: the sediment > ditch pond water > the shallow groundwater. Though they share the same resource of the PAHs which come from the combustion of either biomass or coal. The ditch pond water has a significant influence on the levels of PAHs in the shallow groundwater. The closer of sampling sites to the ditch pond, the higher content of PAHs in shallow groundwater. The carcinogenic risk of PAHs of the shallow groundwater by dringking ranged from 1.8×10−8 to 7.0×10−6 and the risk was higher than general acceptable level (1×10−6) for the subpopulation above 6yrs. The major contributors to the carcinogenicity were Bap and BaA. The non-carcinogenic risk(HQ) of PAHs in the shallow groundwater ranged from 6.1×10−4 to 1.9×10−2, which were far more less than the acceptable level(HQ=1.0). PAHs in the water of No.4 ditch pond was at a level of high ecological risk and BaA was the most contributor, which accounted for 40.7% of the ecological risk. PAHs in the water of No.3 ditch pond was at medium risk level 2, and the major contributors to the ecological risk were DBA and BaA, which accounted for 36.89% and 23.60%, respectively. The ecological risk of PAHs in sediments of all ditch pond have reached to “critical effect”, which suggested the corresponding measures should be taken to control and reduce the PAHs pollution of the ditch pond sediments and water.
-
Key words:
- surface sediment /
- ditch pond water /
- shallow groundwater /
- PAHs /
- pollution characteristics /
- risk assessment
-
表 1 浅层地下水、沟塘水及沉积物中PAHs含量
Table 1. Concentration of PAHs in the surface sediment, surrounding shallow groundwater and ditch pond water
化合物
Compounds环数
RingsTEF 浅层地下水
Shallow groundwater(N=21)沟塘水
Ditch pond water(N=5)沉积物
Surface sediment(N=3)检出率/%
Detection
ration平均值/(ng·L−1)
Average
concentration范围/(ng·L−1)
Concentration
range检出率/%
Detection
ration平均值/(ng·L−1)
Average
concentration范围/(ng·L−1)
Concentration
range检出率/%
Detection
ration平均值/(ng·kg−1)
Average
concentration范围/(ng·kg−1)
Concentration
range奈 (Nap) 2环 0.001 95.2 3.17 ND.—10.2 60.0 3.88 N.D.—13.6 100 8.49 1.07—12.2 苊烯(Acy) 3环 0.001 76.2 4.73 ND.—39.2 0.00 N.D. ND. 100 5.57 1.36—12.2 苊(Ace) 3环 0.001 95.2 14.3 ND.—83.7 100 5.56 0.299—25.6 100 12. 6 10.3—15.1 芴(Flu) 3环 0.001 85.7 9.42 ND.—55.9 100 2.06 0.245—5.39 66.7 3.13 ND.—5.59 菲(Phe) 3环 0.001 100 51.1 0.61—349 100 45.7 7.09—180 66.7 13.7 ND.—22.3 蒽(Ant) 3环 0.01 85.7 13.1 ND.—101 40.0 11.4 ND.—54.9 100 2.77 0.167—4.81 荧蒽(Fl) 4环 0.001 100 40.6 1.39—243 100 82.7 2.59—390 100 28.2 1.63—74.7 芘(Pyr) 4环 0.001 100 40.5 0.782—356 100 48.4 1.35—228 100 23.1 0.0940—61.9 苯并(a)
蒽(BaA)4环 0.1 100 14.5 0.706—122 100 25.0 0.710—115 100 7.70 1.53—18.8 䓛(Chr) 4环 0.01 100 15.9 0.601—115 60 28.9 ND.—136. 100 20.9 7.74—39.0 苯并(b)
荧蒽(BbF)5环 0.1 100 3.93 0.547—27.8 100 11.1 0.825—50.5 66.7 14.4 ND.—37.5 苯并(k)
荧蒽(BkF)5环 0.1 100 1.34 0.203—7.74 100 5.18 0.295—23.8 100 7.84 1.74—19.0 苯并芘
(BaP)5环 1 100 2.72 0.164—17.3 100 11.1 0.0420—55.0 100 16.0 2.18—41.4 二苯并[a,h]
蒽(DBA)5环 1 100 0.83 0.111—5.33 100 11.2 0.274—50.2 100 55.3 0.624—161 苯并[g,h,i]
芘(BP)6环 0.01 100 1.81 0.168—10.2 80.0 17.2 ND.—85.1 100 25.4 0.0520—67.8 茚并[1,2,3-cd]
芘(InP)6环 0.1 100 0.81 0.320—2.87 100 7.30 0.633—28.3 100 10.9 2.27—26.2 ∑7PAHs 40.0 3.36—298 99.7 2.84—414 133 21.9—191 ∑16PAHs 219 8.39—1234 317 15.4—1372 256 101—458 TEQ(BaP)7 5.77 0.727—39.8 27.5 0.568—83.1 75.6 4.01—167 TEQ(BaP)16 6.09 0.763—41.8 28.0 0.589—85.3 76.0 4.16—167 注:1) 粗体为国际癌症研究机构(IARC)划定的7种致癌性PAHs;2) ND.表示未检出;3) TEF表示毒性当量。
Note: 1) In bold means the seven carcinogenic PAHs as defined by the International Agency for Research on Cancer (IARC); 2) ND.means no detected; 3) TEF means toxic equivalent.表 2 风险评价参数及评价结果
Table 2. Risk evaluation parameters and results
PAHs 经口摄入非致癌
参考剂量
RfDo/(mg·(kg·d)−1)经口摄入致癌
斜率因子
SFo/ (kg·d ·mg−1)沟塘水Ditch pond water 沉积物Surface sediment 中国标准
China
standardEPA标准
EPA
standard水体
Water
body评价结果
Evaluation
result质量基准法阈值/(ng·g−1)
Quality reference
method threshold评价结果
Evaluation
result质量标准法阈值/(ng·g−1)
Quality reference method threshold评价结果
Evaluation resultNCs MPCs RQNCs RQMPCs ERL ERM RCF>1 REL TEL OEL PEL FEL 区间
Range点位
Point
position奈(Nap) 4.0×10−2 — — — 12.0 1200 0.324 0.00324 160 2100 17 35 120 390 1200 苊烯(Acy) 6.0×10−2 — — 1.2×106 0.7 70 0 0 16 500 3.3 5.9 30 130 340 TEL-OEL C3 苊(Ace) 6.0×10−2 — — — 0.7 70 7.94 0.0794 44 640 3.7 6.7 21 89 940 TEL-OEL C1、C2、C3 芴(Flu) 4.0×10−2 — — 1.3×106 0.7 70 2.94 0.0294 19 540 10 21 61 140 1200 菲(Phe) 3.0×10−2 — — — 3.0 300 15.2 0.152 240 1500 25 42 130 520 1100 蒽(Ant) 3.0×10−1 — — 9.6×106 0.7 70 16.2 0.162 85.3 1100 16 47 110 240 1100 荧蒽(Fl) 4.0×10−2 — — 3×105 3.0 300 27.6 0.276 600 5100 47 110 450 2400 4900 REL-TEL C3 芘(Pyr) 3.0×10−2 — — 9.6×105 0.7 70 69.2 0.692 665 2600 29 53 230 880 1500 TEL-OEL C3 苯并(a)蒽(BaA) — 7.3×10−1 — 4.4 0.1 10 250 2.50 261 1600 14 32 120 390 760 REL-TEL C3 䓛(Chr) — 7.3×10−3 — 4.4 3.4 340 8.49 0.0849 384 2800 26 57 240 860 1600 REL-TEL C3 苯并(b)荧蒽(BbF) — 7.3×10−1 — 4.4 0.1 10 110 1.10 N.A. N.A. — — — — — 苯并(k)荧蒽(BkF) — 7.3×10−2 — 4.4 0.4 40 12.9 0.129 N.A. N.A. — — — — — 苯并芘(BaP) — 7.3 2.8 4.4 0.5 50 22.2 0.222 430 1600 11 32 150 780 3200 TEL-OEL C3 二苯并[a,h]蒽(DBA) — 7.3 — 4.4 0.5 50 22.4 0.224 63.4 260 C1 3.3 6.2 43 140 200 REL-FEL C1、C3 苯并[g,h,i]芘(BP) 3.0×10−2 — — — 0.3 30 57.2 0.572 — — — — — — — 茚并[1,2,3-cd]芘(InP) — 7.3×10−1 — 4.4 0.4 40 18.3 0.183 — — — — — — — ∑PAHs — — — — — — 641 6.41 — — — — — — — 1) “—”表示无数据;2) NCs表示沟塘水中PAHs最低风险标准值,MPCs表示沟塘水中PAHs最高风险标准值.
1) “—” means no data;2) NCs means minimum risk standard value of PAHs in ditch pond water, MPCs means maximum risk standard value of PAHs in ditch pond water. -
[1] SARRIA-VILLA R, OCAMPO-DUQUE W, PAEZ M,et al. Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. [J]. The Science of the Total Environment, 2016, 540: 455-465. doi: 10.1016/j.scitotenv.2015.07.020 [2] FERNANDEZ P, VILANOVA R M, MARTINEZ C,et al. The historical of record of atmospheric pyrolytic polution over Europe registered in the sedimentary PAH from remote mountain lake [J]. Environmental Science & Technology, 2000, 34(10): 1906-1913. [3] 张明, 唐访良, 张伟, 等. 杭州青山水库沉积物中多环芳烃的垂直分布、来源及潜在生态风险 [J]. 地球与环境, 2020, 48(4): 405-412. ZHANG M, TANG F L, ZHANG W, et al. Vertical profile, source and potential ecological risk of polycyclic aromatic hydrocarbons in sediment cores from the Qingshan Reservoir of Hangzhou [J]. Earth and Environment, 2020, 48(4): 405-412(in Chinese).
[4] 成淑妍, 马晓华, 万宏滨, 等. 昆明松华坝水库沉积物中PAHs垂直分布特征及其来源 [J]. 环境科学研究, 2019, 32(4): 593-600. CHENG S Y, MA X H, WAN H B, et al. Vertical Distribution and source analysis of polycyclic aromatic hydrocarbons in sediments from Songhuaba Reservoir in Kunming City [J]. Research of Environmental Sciences, 2019, 32(4): 593-600(in Chinese).
[5] 李天娇. 辽河保护区干流沉积物重金属和多环芳烃污染特征[D]. 沈阳: 沈阳大学, 2020. LI T J. Pollution characteristics of heavy metals and polycyclic aromatic hydrocarbons in the surface sediments of Liaohe River[D]. Shenyang: Shenyang University, 2020 (in Chinese).
[6] 何书海, 曹小聪, 李腾崖, 等. 三亚河表层沉积物中多环芳烃分布、来源解析及生态风险评价 [J]. 环境化学, 2019, 38(4): 967-970. HE S H, CAO X C, LI T Y, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) insurface sediments from Sanya River [J]. Environmental Chemistry, 2019, 38(4): 967-970(in Chinese).
[7] 曹治国, 刘静玲, 栾芸, 等. 滦河流域多环芳烃的污染特征、风险评价与来源辨析 [J]. 环境科学学报, 2010, 30(2): 246-253. CAO Z G, LIU J L, LUAN Y, et al. Pollution characteristics, risk assessment and source apportionment of polycyclic aromatic hydrocarbons(PAHs) in sediments and water of the Luan River, China [J]. Acta Scientiae Circumstantiae, 2010, 30(2): 246-253(in Chinese).
[8] GUO J Y, WU F C, HAI Q L, et al. Sedimentary record of polycyclic aromatic hydrocarbons and DDTs in Dianchi Lake, an urban lake in South-west China [J]. Environmental Science and Pollution Research International, 2013, 20(8): 5471-5480. doi: 10.1007/s11356-013-1562-8 [9] 李慧, 李捷, 宋鹏, 等. 东北小兴凯湖沉积物POPs污染特征及生态风险评价[J]. 环境科学, 2021, 42(1):147-158 LI H, LI J, SONG P, et al. Characteristics and ecological risk assessment of pops pollution in sediments of Xiaoxingkai Lake in Northeast China [J]. Environmental Science, 2021, 42(1):147-158 (in Chinese).
[10] 张嘉雯, 魏健, 吕一凡, 等. 衡水湖沉积物中典型持久性有机污染物污染特征与风险评估 [J]. 环境科学, 2020, 41(3): 1357-1367. ZHANG J W, WEI J, LV Y F, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Hengshui Lake [J]. Environmental Science, 2020, 41(3): 1357-1367(in Chinese).
[11] 李海燕, 赖子尼, 曾艳艺, 等. 珠江口表层水中多环芳烃的分布特征及健康风险评估 [J]. 中国环境监测, 2018, 34(2): 64-72. LI H Y, LAI Z N, ZENG Y Y, et al. Distribution and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Surface Water of the Pearl River Estuary [J]. Environmental Monitoring in China, 2018, 34(2): 64-72(in Chinese).
[12] 卢丽, 王喆, 裴建国, 等. 南宁市城市近郊型地下河表层沉积物多环芳烃污染特征及来源解析 [J]. 环境污染与防治, 2020, 42(5): 597-603. LU L, WANG Z, PEI J G, et al. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons in surface sediments from suburban type under ground river in Nanning [J]. Environmental Pollution & Control, 2020, 42(5): 597-603(in Chinese).
[13] 张芹, 胡伟, 吴轩, 等. 江苏省某市农村饮用水源中多环芳烃类物质水平 [J]. 环境与职业医学, 2016, 33(7): 691-694,716. ZHANG Q, HU W, WU X, et al. Polycyclic aromatic hydrocarbons levels in drinking water sources in rural areas in a city of Jiangsu Province [J]. Journal of Environmental & Occupational Medicine, 2016, 33(7): 691-694,716(in Chinese).
[14] 许丹丹, 饶竹, 梁汉东, 等. 气相色谱-质谱法同时测定地下水中36种多环芳烃及其衍生物 [J]. 理化检验(化学分册), 2019, 55(1): 31-38. XU D D, RAO Z, LIANG H D, et al. Simultaneous determination of 36 kinds of polycyclic aromatic hydrocarbons and their deribatives in groundwater by gas chromatography-mass spectrometry [J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2019, 55(1): 31-38(in Chinese).
[15] 贾成俊, 赵淑莉, 翟超英, 等. 农村饮用水中多环芳烃的致癌风险评价 [J]. 环境与健康杂志, 2015, 32(12): 1087-1091. JIA C J, ZHAO S L, ZHAI C Y, et al. Carcinogenic risk assessment on polycyclic aromatic hydrocarbons in some rural drinking water [J]. Journal of Environment and Health, 2015, 32(12): 1087-1091(in Chinese).
[16] 龚晓洁, 王豫飞, 田源, 等. 河南平原浅层地下水有机污染物污染特征研究 [J]. 环境科学与管理, 2019, 44(11): 152-156. doi: 10.3969/j.issn.1673-1212.2019.11.031 GONG X J, WANG Y F, TIAN Y, et al. Exploration of shallow groundwater organic pollution characteristics In Henan Plain [J]. Environmental Science and Management, 2019, 44(11): 152-156(in Chinese). doi: 10.3969/j.issn.1673-1212.2019.11.031
[17] TSAI P J, SHIH T S, CHEN H L, et al. Assessing and predicting the exposure of PAHs and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers [J]. Atmospheric Environment, 2004, 38(2): 333-343. doi: 10.1016/j.atmosenv.2003.08.038 [18] WEI Y L, BAO L J, WU C C, et al. Association of soil polycyclic aromatic hydrocarbon levels and anthropogenic impacts in a rapidly urbanizing region: spatial distribution, soil-air exchange and ecological risk [J]. The Science of the Total Environment, 2014, 473-474(3): 676-684. [19] YUAN G L, WU L J, SUN Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling [J]. Environmental Pollution, 2015, 203: 137-144. doi: 10.1016/j.envpol.2015.04.002 [20] READMAN J W, FILLMANN G, TOLOSA I, et al. Petroleum and PAH contamination of the Black Sea [J]. Marine Pollution Bulletin, 2002, 44(1): 48-62. doi: 10.1016/S0025-326X(01)00189-8 [21] BUDZINSKI H, JONES I, BELLOCQ J, et al. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary [J]. Marine Chemistry, 1997, 58(1): 85-97. [22] YUNKER M B, MACDONALD R W, VINGARZAN R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5 [23] 张晗, 刘凯, 邹天森, 等. 某地区两个燃煤电厂周边农田土壤中多环芳烃污染特征及生态安全评价 [J]. 环境化学, 2019, 38(8): 1832-1841. doi: 10.7524/j.issn.0254-6108.2018090401 ZHANG H, LIU K, ZOU T S, et al. Pollution characteristics and evaluation ecological safety of the polycyclic aromatic hydrocarbons(PAHs) pollution in surface soil of farmland around two coal-fired power plants [J]. Environmental Chemistry, 2019, 38(8): 1832-1841(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090401
[24] 张晗, 陆少游, 刘凯, 等. 某生活垃圾焚烧发电厂周边农田土壤中PAHs生态安全评价 [J]. 环境科学研究, 2019, 32(12): 2124-2131. ZHANG H, LU S Y, LIU K, et al. Ecological safety evaluation of the polycyclic aromatic hydrocarbons (PAHs) in surface soil of farmland around a municipal solid waste incineration power plant [J]. Research of Environmental Sciences, 2019, 32(12): 2124-2131(in Chinese).
[25] 张金良, 张晗, 邹天森, 等. 某生物质电厂周边农田土壤中多环芳烃污染特征及生态安全评价 [J]. 环境科学学报, 2019, 39(5): 1655-1663. ZHANG J L, ZHANG H, ZOU T S, et al. Pollution characteristics and evaluation safety of the polycyclic aromatic hydrocarbons (PAHs) pollution in surface soil of farmland around the Biomass Power Plant [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1655-1663(in Chinese).
[26] U.S. EPA. Supplement risk assessment Part 1. Guidance for public health risk assessment[R]. Washington: EPA, 1989. [27] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. Ministry of Environmental Protection. Exposure Factors Handbook of Chinese population [M]. Beijing: China Environmental Science Press, 2013 (in Chinese).
[28] 环境保护部. 中国人群暴露参数手册(儿童卷: 0-5岁)[M]. 北京: 中国环境出版社, 2016. Ministry of Environmental Protection. Exposure Factors Handbook of Chinese population(0-5 years) [M]. Beijing: China Environmental Science Press, 2016 (in Chinese).
[29] 环境保护部. 中国人群暴露参数手册(儿童卷: 6-17岁))[M]. 北京: 中国环境出版社, 2016.. Ministry of Environmental Protection. Exposure Factors Handbook of Chinese population(6-17 years) [M]. Beijing: China Environmental Science Press, 2016 (in Chinese).
[30] U.S. EPA. The risk assessment information system[DB/OL]. [2020-2-25].https://rais.ornl.gov/cgi-bin/tools/TOX_search. [31] U.S. EPA. Integrated Risk Information System[DB/OL]. [2020-2-25]. https://cfpub.epa.gov/ncea/iris/search/index.cfm?keyword=PAH. [32] LONG E R, MACDONALD D D, SMITH S L, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments [J]. Environmental Management, 1995, 19(1): 81-97. doi: 10.1007/BF02472006 [33] CHEN B L, XUAN X D, ZHU L Z, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China [J]. Water Research, 2004, 38(16): 3558-3568. doi: 10.1016/j.watres.2004.05.013