有机化学品鱼体生物积累参数的多任务神经网络预测模型构建

朱明华, 肖子君, 傅志强, 陈景文, 丁蕊. 有机化学品鱼体生物积累参数的多任务神经网络预测模型构建[J]. 生态毒理学报, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004
引用本文: 朱明华, 肖子君, 傅志强, 陈景文, 丁蕊. 有机化学品鱼体生物积累参数的多任务神经网络预测模型构建[J]. 生态毒理学报, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004
Zhu Minghua, Xiao Zijun, Fu Zhiqiang, Chen Jingwen, Ding Rui. Multi-task Neutral Network Models for Simultaneous Prediction of Bioaccumulation Parameters of Organic Chemicals in Fish[J]. Asian journal of ecotoxicology, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004
Citation: Zhu Minghua, Xiao Zijun, Fu Zhiqiang, Chen Jingwen, Ding Rui. Multi-task Neutral Network Models for Simultaneous Prediction of Bioaccumulation Parameters of Organic Chemicals in Fish[J]. Asian journal of ecotoxicology, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004

有机化学品鱼体生物积累参数的多任务神经网络预测模型构建

    作者简介: 朱明华(1993—),女,博士,研究方向为化学品的分析测试与计算毒理学,E-mail: zhuminghua@dlut.edu.cn
    通讯作者: 傅志强, E-mail: fuzq@dlut.edu.cn
  • 基金项目:

    国家重点研发计划项目(2018YFE0110700);国家自然科学基金资助项目(22136001,22206022,22276020);工业生态与环境工程教育部重点实验室开放基金(KLIEEE-21-01);中央高校基本科研业务费青年科学家创新团队项目(DUT22QN216)

  • 中图分类号: X171.5

Multi-task Neutral Network Models for Simultaneous Prediction of Bioaccumulation Parameters of Organic Chemicals in Fish

    Corresponding author: Fu Zhiqiang, fuzq@dlut.edu.cn
  • Fund Project:
  • 摘要: 获取化学品的生物积累性数据是评价其生态及健康风险的前提。基于机器学习算法的模型已被用于生物积累性预测,填补相关数据空缺。但已有预测模型仅针对单一终点,忽略了不同终点间的内在联系。基于多任务学习算法的模型,有望实现多个生物积累参数的同时预测。本研究采用反向传播(back-propagation, BP)神经网络机器学习算法,基于分子Dragon描述符和4种分子指纹,建立了可同时预测化学品鱼体生物富集因子(BCF)和生物放大因子(BMF)的多任务模型,并与单任务模型进行了比较。结果表明,多任务模型的拟合效果、稳健性和预测能力均优于单任务模型。采用Dragon描述符作为输入的多任务模型表现最好,其训练集的决定系数(R2)、均方根误差(RMSE)和平均绝对误差(MAE)分别为0.925~0.964、0.168~0.247和0.133;验证集的R2、RMSE和MAE分别为0.771~0.894、0.176~0.213和0.168~0.176;10折交叉验证系数(Q2cv)为0.785~0.867。基于验证集与训练集分子间的谷本相似度表征了模型应用域。本研究所建模型可有效填补化学品生物积累性数据,为化学品生物积累性及风险评价提供技术支持。
  • 加载中
  • Chen D, Kannan K, Tan H L, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review[J]. Environmental Science & Technology, 2016, 50(11): 5438-5453
    Liu R Z, Mabury S A. Synthetic phenolic antioxidants in personal care products in Toronto, Canada: Occurrence, human exposure, and discharge via greywater[J]. Environmental Science & Technology, 2019, 53(22): 13440-13448
    Provencher J F, Malaisé F, Mallory M L, et al. 44-year retrospective analysis of ultraviolet absorbents and industrial antioxidants in seabird eggs from the Canadian Arctic (1975 to 2019)[J]. Environmental Science & Technology, 2022, 56(20): 14562-14573
    Li Y N, Yao J Z, Zhang J, et al. First report on the bioaccumulation and trophic transfer of perfluoroalkyl ether carboxylic acids in estuarine food web[J]. Environmental Science & Technology, 2022, 56(10): 6046-6055
    Gaballah S, Swank A, Sobus J R, et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS[J]. Environmental Health Perspectives, 2020, 128(4): 47005
    Zhang T T, Zhou X, Xu A M, et al. Toxicity of polybrominated diphenyl ethers (PBDEs) on rodent male reproductive system: A systematic review and meta-analysis of randomized control studies[J]. The Science of the Total Environment, 2020, 720: 137419
    Li F, Li X H, Shao J P, et al. Estrogenic activity of anthraquinone derivatives: in vitro and in silico studies[J]. Chemical Research in Toxicology, 2010, 23(8): 1349-1355
    Luo T L, Chen J W, Song B, et al. Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna[J]. Aquatic Toxicology, 2017, 191: 105-112
    Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475
    陈景文, 全燮. 环境化学[M]. 大连: 大连理工大学出版社, 2009: 170-176
    European Union. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006, concerning the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH)[R]. Brussels: European Union, 2006
    中华人民共和国生态环境部. 新化学物质环境管理登记指南[R]. 北京: 中华人民共和国生态环境部, 2020
    Organisation for Economic Co-operation and Development (OECD). OECD guidelines for the testing of chemicals, Test No. 305: Bioaccumulation in fish: Aqueous and dietary exposure[R]. Paris: OECD, 2012
    Zhao C Y, Boriani E, Chana A, et al. A new hybrid system of QSAR models for predicting bioconcentration factors (BCF)[J]. Chemosphere, 2008, 73(11): 1701-1707
    Dearden J C, Hewitt M. QSAR modelling of bioconcentration factor using hydrophobicity, hydrogen bonding and topological descriptors[J]. SAR and QSAR in Environmental Research, 2010, 21(7-8): 671-680
    Strempel S, Nendza M, Scheringer M, et al. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals[J]. Environmental Toxicology and Chemistry, 2013, 32(5): 1187-1195
    郑玉婷, 乔显亮, 于洋, 等. 有机化学品生物富集因子定量结构-活性关系模型[J]. 生态毒理学报, 2019, 14(2): 214-221

    Zheng Y T, Qiao X L, Yu Y, et al. Quantitative structure-activity relationship model for bioconcentration factors of organic chemicals[J]. Asian Journal of Ecotoxicology, 2019, 14(2): 214-221(in Chinese)

    丁蕊, 陈景文, 于洋, 等. 基于集成学习算法构建有机化学品鱼体生物富集因子的QSAR预测模型[J]. 环境化学, 2021, 40(5): 1295-1304

    Ding R, Chen J W, Yu Y, et al. Using ensemble learning algorithms to develop QSAR models on bioconcentration factors of organic chemicals in multispecies fish[J]. Environmental Chemistry, 2021, 40(5): 1295-1304(in Chinese)

    Fatemi M H, Abraham M H, Haghdadi M. Prediction of biomagnification factors for some organochlorine compounds using linear free energy relationship parameters and artificial neural networks[J]. SAR and QSAR in Environmental Research, 2009, 20(5-6): 453-465
    Caruana R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75
    Muratov E N, Bajorath J, Sheridan R P, et al. QSAR without borders[J]. Chemical Society Reviews, 2020, 49(11): 3525-3564
    Wu Z X, Jiang D J, Wang J K, et al. Mining toxicity information from large amounts of toxicity data[J]. Journal of Medicinal Chemistry, 2021, 64(10): 6924-6936
    Zhang Y, Yang Q. An overview of multi-task learning[J]. National Science Review, 2018, 5(1): 30-43
    Wu K D, Zhao Z X, Wang R X, et al. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility[J]. Journal of Computational Chemistry, 2018, 39(20): 1444-1454
    Wu K D, Wei G W. Quantitative toxicity prediction using topology based multitask deep neural networks[J]. Journal of Chemical Information and Modeling, 2018, 58(2): 520-531
    Arnot J, Gobas F. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms[J]. Environmental Reviews, 2006, 14(4): 257-297
    Arnot J A, Quinn C L. Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish[J]. Environmental Science & Technology, 2015, 49(8): 4783-4796
    Grisoni F, Consonni V, Vighi M. Acceptable-by-design QSARs to predict the dietary biomagnification of organic chemicals in fish[J]. Integrated Environmental Assessment and Management, 2019, 15(1): 51-63
    Mansouri K, Consonni V, Durjava M K, et al. Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling[J]. Chemosphere, 2012, 89(4): 433-444
    Talete S R L. DRAGON (Software for Molecular Descriptor Calculation) Version 6.0[CP].Italy: TALETE SRL, 2012
    Bikesh K, Kesari V, S Thoke A. Investigations on impact of feature normalization techniques on classifier's performance in breast tumor classification[J]. International Journal of Computer Applications, 2015, 116(19): 11-15
    Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536
    覃礼堂, 刘树深, 肖乾芬, 等. QSAR模型内部和外部验证方法综述[J]. 环境化学, 2013, 32(7): 1205-1211

    Qin L T, Liu S S, Xiao Q F, et al. Internal and external validations of QSAR model: Review[J]. Environmental Chemistry, 2013, 32(7): 1205-1211(in Chinese)

    Wang Z Y, Chen J W, Hong H X. Applicability domains enhance application of PPARγ agonist classifiers trained by drug-like compounds to environmental chemicals[J]. Chemical Research in Toxicology, 2020, 33(6): 1382-1388
    Wang Z Y, Chen J W, Hong H X. Developing QSAR models with defined applicability domains on PPARγ binding affinity using large data sets and machine learning algorithms[J]. Environmental Science & Technology, 2021, 55(10): 6857-6866
    Wang H T, Xia X H, Wang Z X, et al. Contribution of dietary uptake to PAH bioaccumulation in a simplified pelagic food chain: Modeling the influences of continuous vs intermittent feeding in zooplankton and fish[J]. Environmental Science & Technology, 2021, 55(3): 1930-1940
    Wang H T, Xia X H, Liu R, et al. Multicompartmental toxicokinetic modeling of discrete dietary and continuous waterborne uptake of two polycyclic aromatic hydrocarbons by zebrafish Danio rerio[J]. Environmental Science & Technology, 2020, 54(2): 1054-1065
  • 加载中
计量
  • 文章访问数:  1672
  • HTML全文浏览数:  1672
  • PDF下载数:  108
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-22
朱明华, 肖子君, 傅志强, 陈景文, 丁蕊. 有机化学品鱼体生物积累参数的多任务神经网络预测模型构建[J]. 生态毒理学报, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004
引用本文: 朱明华, 肖子君, 傅志强, 陈景文, 丁蕊. 有机化学品鱼体生物积累参数的多任务神经网络预测模型构建[J]. 生态毒理学报, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004
Zhu Minghua, Xiao Zijun, Fu Zhiqiang, Chen Jingwen, Ding Rui. Multi-task Neutral Network Models for Simultaneous Prediction of Bioaccumulation Parameters of Organic Chemicals in Fish[J]. Asian journal of ecotoxicology, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004
Citation: Zhu Minghua, Xiao Zijun, Fu Zhiqiang, Chen Jingwen, Ding Rui. Multi-task Neutral Network Models for Simultaneous Prediction of Bioaccumulation Parameters of Organic Chemicals in Fish[J]. Asian journal of ecotoxicology, 2023, 18(2): 238-248. doi: 10.7524/AJE.1673-5897.20221122004

有机化学品鱼体生物积累参数的多任务神经网络预测模型构建

    通讯作者: 傅志强, E-mail: fuzq@dlut.edu.cn
    作者简介: 朱明华(1993—),女,博士,研究方向为化学品的分析测试与计算毒理学,E-mail: zhuminghua@dlut.edu.cn
  • 工业生态与环境工程教育部重点实验室, 大连市化学品风险防控及污染防治技术重点实验室, 大连理工大学环境学院, 大连 116024
基金项目:

国家重点研发计划项目(2018YFE0110700);国家自然科学基金资助项目(22136001,22206022,22276020);工业生态与环境工程教育部重点实验室开放基金(KLIEEE-21-01);中央高校基本科研业务费青年科学家创新团队项目(DUT22QN216)

摘要: 获取化学品的生物积累性数据是评价其生态及健康风险的前提。基于机器学习算法的模型已被用于生物积累性预测,填补相关数据空缺。但已有预测模型仅针对单一终点,忽略了不同终点间的内在联系。基于多任务学习算法的模型,有望实现多个生物积累参数的同时预测。本研究采用反向传播(back-propagation, BP)神经网络机器学习算法,基于分子Dragon描述符和4种分子指纹,建立了可同时预测化学品鱼体生物富集因子(BCF)和生物放大因子(BMF)的多任务模型,并与单任务模型进行了比较。结果表明,多任务模型的拟合效果、稳健性和预测能力均优于单任务模型。采用Dragon描述符作为输入的多任务模型表现最好,其训练集的决定系数(R2)、均方根误差(RMSE)和平均绝对误差(MAE)分别为0.925~0.964、0.168~0.247和0.133;验证集的R2、RMSE和MAE分别为0.771~0.894、0.176~0.213和0.168~0.176;10折交叉验证系数(Q2cv)为0.785~0.867。基于验证集与训练集分子间的谷本相似度表征了模型应用域。本研究所建模型可有效填补化学品生物积累性数据,为化学品生物积累性及风险评价提供技术支持。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回