全氟化合物在鱼类肝脏中的生物富集因子预测与影响因素分析
Prediction of Bioconcentration Factor and Analysis of Influencing Factors of Perfluorinated Compounds in Fish Liver
-
摘要: 全氟化合物(perfluorinated compounds, PFCs)作为一种新兴有机污染物,因其环境持久性及生物富集性,对生态环境健康存在潜在风险。鉴于实验测定PFCs生物富集作用的局限性,为实现对PFCs生物富集因子(bioconcentration factor, BCF)的合理预测及其影响因素分析,本研究基于前人报道的log BCF实验数据,采用多元线性逐步回归方法建立了PFCs对鱼类肝脏生物富集作用的定量结构-活性关系(quantitative structure-activity relationship, QSAR)模型,并对该模型进行了全面验证与评估及机理解释。结果表明,所建QSAR模型的决定系数(R2=0.902)、内部验证指标(Q2LOO=0.852)、外部验证指标(Q2F1=0.855、Q2F2=0.850、Q2F3=0.814)等统计参数均符合建模标准,模型具备良好的拟合优度、稳健性和预测能力;Williams图显示所建模型具有较强的泛化能力。PFCs的分子体积(V)和分子表面电位的最小值(Vs,min)是影响其在鱼类肝脏中富集的重要原因,且分子体积起主导作用;PFCs的生物富集效应是疏水与氢键相互作用机制共同影响的结果。Abstract: As an emerging organic pollutant, perfluorinated compounds (PFCs) are considered to be a potential threat to the ecological environment due to their persistent, bioaccumulative, and toxic properties. Based on the previously reported experimental log bioconcentration factor (BCF) data, the multiple linear stepwise regression method was introduced to establish a quantitative structure-activity relationship (QSAR) model to predict the BCF of PFCs on fish liver and its impact mechanism, avoiding the limitations of experimental determination of PFCs bioaccumulation. Subsequently, the proposed model was validated and evaluated, and the identified impact mechanism was explained. The coefficient of determination (R2=0.902), internal validation metric (Q2LOO=0.852), and external validation metrics (Q2F1=0.855, Q2F2=0.850, Q2F3=0.814) demonstrated the good performance of the proposed model in terms of goodness of fit, robustness and prediction accuracy. Moreover, the Williams graph confirmed the strong generalization ability of the proposed model. Furthermore, molecular volume (V) and the minimum value of molecular surface potential (Vs, min) were identified as the key influencing factors affecting the enrichment of PFCs in fish liver, and the former played a dominant role. The bioaccumulation effect of PFCs was found to be the result of the interaction and co-influence of hydrophobic and hydrogen bonds.
-
Key words:
- PFCs /
- fish liver /
- bioconcentration factor /
- QSAR
-
-
李春梅, 岳宁, 周杰, 等. 基于超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术研究全氟化合物质谱裂解规律[J]. 食品安全质量检测学报, 2020, 11(22): 8380-8386 Li C M, Yue N, Zhou J, et al. Study on the mass spectrometry fragmentation of perfluorinated compounds based on ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. Journal of Food Safety & Quality, 2020, 11(22): 8380-8386(in Chinese)
顾春节, 钟哲辉, 徐晨烨, 等. 印染末端废水中全氟化合物的污染特征、影响因素及风险评价[J]. 环境科学学报, 2021, 41(5): 1920-1929 Gu C J, Zhong Z H, Xu C Y, et al. Occurrence, influencing factors, and risks assessment of perfluorinated compounds (PFCs) in wastewater from textile and dyeing industry[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1920-1929(in Chinese)
Ahrens L, Bundschuh M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review[J]. Environmental Toxicology and Chemistry, 2014, 33(9): 1921-1929 Liu Y, Li X, Wang X, et al. Contamination profiles of perfluoroalkyl substances (PFAS) in groundwater in the alluvial-pluvial plain of Hutuo River, China[J]. Water, 2019, 11(11): 1-2316 李梦丹. 上海市大气中全氟化合物迁移和转化的数值模拟研究[D]. 上海: 上海交通大学, 2016: 13-14 Li M D. Numerical simulation of perfluorinated compounds migration and transformation in Shanghai's atmosphere[D]. Shanghai: Shanghai Jiao Tong University, 2016: 13 -14(in Chinese)
Xiao F, Simcik M F, Halbach T R, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure[J]. Water Research, 2015, 72: 64-74 Mariussen E. Neurotoxic effects of perfluoroalkylated compounds: Mechanisms of action and environmental relevance[J]. Archives of Toxicology, 2012, 86(9): 1349-1367 张小梅, 宋锦兰, 金一和, 等. 全氟辛烷磺酸对雄性鹌鹑生殖毒性影响[J]. 生态毒理学报, 2011, 6(2): 143-148 Zhang X M, Song J L, Jin Y H, et al. Study on reproductive toxicity of perfluorooctane sulfonate (PFOS) in male quail[J]. Asian Journal of Ecotoxicology, 2011, 6(2): 143-148(in Chinese)
谢蕾, 章涛, 孙红文. 全氟烷基化合物在人体肝脏中的富集特征及其与肝损伤的关系[J]. 环境化学, 2020, 39(6): 1479-1487 Xie L, Zhang T, Sun H W. Enrichment characteristics of perfluoroalkyl substances (PFASs) in human liver and its association with hepatocyte apoptosis[J]. Environmental Chemistry, 2020, 39(6): 1479-1487(in Chinese)
Schultz T W, Cronin M T D, Walker J D, et al. Quantitative structure–activity relationships (QSARs) in toxicology: A historical perspective[J]. Journal of Molecular Structure: THEOCHEM, 2003, 622(1-2): 1-22 吴少奇, 王黎, 夏正海, 等. QSAR模型预测石化废水中芳香族物质对厌氧菌群的综合毒性[J]. 生态毒理学报, 2020, 15(6): 167-174 Wu S Q, Wang L, Xia Z H, et al. QSAR modelling for predicting comprehensive toxicity of aromatic substances to anaerobic microflora in petrochemical wastewater[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 167-174(in Chinese)
金玲敏, 徐童, 乔显亮. OPAHs对斑马鱼胚胎的急性毒性预测[J]. 生态毒理学报, 2021, 16(6): 53-59 Jin L M, Xu T, Qiao X L. Prediction of acute toxicity by OPAHs to zebrafish embryos[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 53-59(in Chinese)
Organization for Economic Co-operation and Development (OECD). Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship[(Q) SAR] Models[M]// Environment Health and Safety Publications Series on Testing and Assessment. Paris: OECD, 2007, 2: 1-154 胡哲. 不同生物介质中全氟化合物的分布特征及富集规律研究[D]. 武汉: 华中农业大学, 2016: 57 Hu Z. Study on the distribution characteristics and enrichment laws of perfluorinated compounds in different biological media[D]. Wuhan: Huazhong Agricultural University, 2016: 57(in Chinese) Pan C G, Zhao J L, Liu Y S, et al. Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China[J]. Ecotoxicology and Environmental Safety, 2014, 107: 192-199 百度百科. 变异系数[EB/OL]. (2021-12-31)[2022-07-18]. http://baike.baidu.com/item/变异系数/6463621?fr=aladdin Brusseau M L. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances[J]. Environmental Pollution, 2019, 254(Pt B): 113102 Zhang L. Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems[M]. Singapore: Springer, 2016: 497-503 Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592 Lu T, Chen Q X. Van der Waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions[J]. Journal of Molecular Modeling, 2020, 26(11): 315 Kunal R, Supratik K, Rudra N D. A Primer on QSAR/QSPR Modeling[M]. Berlin: Springer, 2015: 48-52 Zhu T Y, Wu J, He C D, et al. Development and evaluation of MTLSER and QSAR models for predicting polyethylene-water partition coefficients[J]. Journal of Environmental Management, 2018, 223: 600-606 何培, 潘勇, 蒋军成, 等. 芳香族硝基化合物爆速的定量构效关系预测[J]. 中国安全科学学报, 2018, 28(7): 32-37 He P, Pan Y, Jiang J C, et al. Prediction of detonation velocity of nitro aromatic compounds based on quantitative structure-property relationship[J]. China Safety Science Journal, 2018, 28(7): 32-37(in Chinese)
李建凤, 廖立敏. 不饱和烃类化合物溶解度(-lg Sw)的QSPR研究[J]. 湖南师范大学自然科学学报, 2020, 43(1): 68-74 Li J F, Liao L M. QSPR study on solubility (-lg Sw) of unsaturated hydrocarbons[J]. Journal of Natural Science of Hunan Normal University, 2020, 43(1): 68-74(in Chinese)
Kiralj R, Ferreira M M. Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application[J]. Journal of the Brazilian Chemical Society, 2009, 20: 770-787 Li Y, Yu X Y, Chen X, et al. Underlying mechanisms for the impacts of molecular structures and water chemistry on the enrichment of poly/perfluoroalkyl substances in aqueous aerosol[J]. Science of the Total Environment, 2022, 803: 150003 吕利平, 李兵, 何树华, 等. 基于定量-构效关系预测含低碳酯二元共沸物的共沸温度[J]. 化学工程, 2019, 47(11): 44-49 Lyu L P, Li B, He S H, et al. Predicting the azeotropic temperature of binary azeotropes containing low carbon esters based on the quantitative structure-property relation theory[J]. Chemical Engineering (China), 2019, 47(11): 44-49(in Chinese)
刘莹, 于影, 石宝友, 等. 供水管网铁释放的影响因素相对重要性分析[J]. 环境科学, 2017, 38(12): 5090-5096 Liu Y, Yu Y, Shi B Y, et al. Relative importance of factors influencing iron release in drinking water distribution systems[J]. Environmental Science, 2017, 38(12): 5090-5096(in Chinese)
Rayne S, Forest K, Friesen K J. Estimated bioconcentration factors (BCFs) for the C4 through C8 perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acid (PFCA) congeners[J]. Journal of Environmental Science and Health, Part A, 2009, 44(6): 598-604 Apul O G, Wang Q L, Shao T, et al. Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2013, 47(5): 2295-2303 Pedretti A, Villa L, Vistoli G. VEGA: A versatile program to convert, handle and visualize molecular structure on Windows-based PCs[J]. Journal of Molecular Graphics and Modelling, 2002, 21(1): 47-49 Apul O, Perreault F, Ersan G, et al. Linear solvation energy relationship development for adsorption of synthetic organic compounds by carbon nanomaterials: An overview of the last decade[J]. Environmental Science: Water Research & Technology, 2020, 6(11): 2949-2957 Liu C H, Chang V W C, Gin K Y H. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2323-2332 Bhhatarai B, Gramatica P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals[J]. Environmental Science & Technology, 2011, 45(19): 8120-8128 US Environmental Protection Agency. Guidelines for exposure assessment[R]. Washington DC: US Environmental Protection Agency, 1992 -

计量
- 文章访问数: 1774
- HTML全文浏览数: 1774
- PDF下载数: 77
- 施引文献: 0