李春梅, 岳宁, 周杰, 等. 基于超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术研究全氟化合物质谱裂解规律[J]. 食品安全质量检测学报, 2020, 11(22): 8380-8386
Li C M, Yue N, Zhou J, et al. Study on the mass spectrometry fragmentation of perfluorinated compounds based on ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. Journal of Food Safety & Quality, 2020, 11(22): 8380-8386(in Chinese)
|
顾春节, 钟哲辉, 徐晨烨, 等. 印染末端废水中全氟化合物的污染特征、影响因素及风险评价[J]. 环境科学学报, 2021, 41(5): 1920-1929
Gu C J, Zhong Z H, Xu C Y, et al. Occurrence, influencing factors, and risks assessment of perfluorinated compounds (PFCs) in wastewater from textile and dyeing industry[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1920-1929(in Chinese)
|
Ahrens L, Bundschuh M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review[J]. Environmental Toxicology and Chemistry, 2014, 33(9): 1921-1929
|
Liu Y, Li X, Wang X, et al. Contamination profiles of perfluoroalkyl substances (PFAS) in groundwater in the alluvial-pluvial plain of Hutuo River, China[J]. Water, 2019, 11(11): 1-2316
|
李梦丹. 上海市大气中全氟化合物迁移和转化的数值模拟研究[D]. 上海: 上海交通大学, 2016: 13-14 Li M D. Numerical simulation of perfluorinated compounds migration and transformation in Shanghai's atmosphere[D]. Shanghai: Shanghai Jiao Tong University, 2016: 13
-14(in Chinese)
|
Xiao F, Simcik M F, Halbach T R, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure[J]. Water Research, 2015, 72: 64-74
|
Mariussen E. Neurotoxic effects of perfluoroalkylated compounds: Mechanisms of action and environmental relevance[J]. Archives of Toxicology, 2012, 86(9): 1349-1367
|
张小梅, 宋锦兰, 金一和, 等. 全氟辛烷磺酸对雄性鹌鹑生殖毒性影响[J]. 生态毒理学报, 2011, 6(2): 143-148
Zhang X M, Song J L, Jin Y H, et al. Study on reproductive toxicity of perfluorooctane sulfonate (PFOS) in male quail[J]. Asian Journal of Ecotoxicology, 2011, 6(2): 143-148(in Chinese)
|
谢蕾, 章涛, 孙红文. 全氟烷基化合物在人体肝脏中的富集特征及其与肝损伤的关系[J]. 环境化学, 2020, 39(6): 1479-1487
Xie L, Zhang T, Sun H W. Enrichment characteristics of perfluoroalkyl substances (PFASs) in human liver and its association with hepatocyte apoptosis[J]. Environmental Chemistry, 2020, 39(6): 1479-1487(in Chinese)
|
Schultz T W, Cronin M T D, Walker J D, et al. Quantitative structure–activity relationships (QSARs) in toxicology: A historical perspective[J]. Journal of Molecular Structure: THEOCHEM, 2003, 622(1-2): 1-22
|
吴少奇, 王黎, 夏正海, 等. QSAR模型预测石化废水中芳香族物质对厌氧菌群的综合毒性[J]. 生态毒理学报, 2020, 15(6): 167-174
Wu S Q, Wang L, Xia Z H, et al. QSAR modelling for predicting comprehensive toxicity of aromatic substances to anaerobic microflora in petrochemical wastewater[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 167-174(in Chinese)
|
金玲敏, 徐童, 乔显亮. OPAHs对斑马鱼胚胎的急性毒性预测[J]. 生态毒理学报, 2021, 16(6): 53-59
Jin L M, Xu T, Qiao X L. Prediction of acute toxicity by OPAHs to zebrafish embryos[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 53-59(in Chinese)
|
Organization for Economic Co-operation and Development (OECD). Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship[(Q) SAR] Models[M]// Environment Health and Safety Publications Series on Testing and Assessment. Paris: OECD, 2007, 2: 1-154
|
胡哲. 不同生物介质中全氟化合物的分布特征及富集规律研究[D]. 武汉: 华中农业大学, 2016: 57 Hu Z. Study on the distribution characteristics and enrichment laws of perfluorinated compounds in different biological media[D]. Wuhan: Huazhong Agricultural University, 2016: 57(in Chinese)
|
Pan C G, Zhao J L, Liu Y S, et al. Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China[J]. Ecotoxicology and Environmental Safety, 2014, 107: 192-199
|
百度百科. 变异系数[EB/OL]. (2021-12-31)[2022-07-18]. http://baike.baidu.com/item/变异系数/6463621?fr=aladdin
|
Brusseau M L. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances[J]. Environmental Pollution, 2019, 254(Pt B): 113102
|
Zhang L. Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems[M]. Singapore: Springer, 2016: 497-503
|
Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592
|
Lu T, Chen Q X. Van der Waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions[J]. Journal of Molecular Modeling, 2020, 26(11): 315
|
Kunal R, Supratik K, Rudra N D. A Primer on QSAR/QSPR Modeling[M]. Berlin: Springer, 2015: 48-52
|
Zhu T Y, Wu J, He C D, et al. Development and evaluation of MTLSER and QSAR models for predicting polyethylene-water partition coefficients[J]. Journal of Environmental Management, 2018, 223: 600-606
|
何培, 潘勇, 蒋军成, 等. 芳香族硝基化合物爆速的定量构效关系预测[J]. 中国安全科学学报, 2018, 28(7): 32-37
He P, Pan Y, Jiang J C, et al. Prediction of detonation velocity of nitro aromatic compounds based on quantitative structure-property relationship[J]. China Safety Science Journal, 2018, 28(7): 32-37(in Chinese)
|
李建凤, 廖立敏. 不饱和烃类化合物溶解度(-lg Sw)的QSPR研究[J]. 湖南师范大学自然科学学报, 2020, 43(1): 68-74
Li J F, Liao L M. QSPR study on solubility (-lg Sw) of unsaturated hydrocarbons[J]. Journal of Natural Science of Hunan Normal University, 2020, 43(1): 68-74(in Chinese)
|
Kiralj R, Ferreira M M. Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application[J]. Journal of the Brazilian Chemical Society, 2009, 20: 770-787
|
Li Y, Yu X Y, Chen X, et al. Underlying mechanisms for the impacts of molecular structures and water chemistry on the enrichment of poly/perfluoroalkyl substances in aqueous aerosol[J]. Science of the Total Environment, 2022, 803: 150003
|
吕利平, 李兵, 何树华, 等. 基于定量-构效关系预测含低碳酯二元共沸物的共沸温度[J]. 化学工程, 2019, 47(11): 44-49
Lyu L P, Li B, He S H, et al. Predicting the azeotropic temperature of binary azeotropes containing low carbon esters based on the quantitative structure-property relation theory[J]. Chemical Engineering (China), 2019, 47(11): 44-49(in Chinese)
|
刘莹, 于影, 石宝友, 等. 供水管网铁释放的影响因素相对重要性分析[J]. 环境科学, 2017, 38(12): 5090-5096
Liu Y, Yu Y, Shi B Y, et al. Relative importance of factors influencing iron release in drinking water distribution systems[J]. Environmental Science, 2017, 38(12): 5090-5096(in Chinese)
|
Rayne S, Forest K, Friesen K J. Estimated bioconcentration factors (BCFs) for the C4 through C8 perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acid (PFCA) congeners[J]. Journal of Environmental Science and Health, Part A, 2009, 44(6): 598-604
|
Apul O G, Wang Q L, Shao T, et al. Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2013, 47(5): 2295-2303
|
Pedretti A, Villa L, Vistoli G. VEGA: A versatile program to convert, handle and visualize molecular structure on Windows-based PCs[J]. Journal of Molecular Graphics and Modelling, 2002, 21(1): 47-49
|
Apul O, Perreault F, Ersan G, et al. Linear solvation energy relationship development for adsorption of synthetic organic compounds by carbon nanomaterials: An overview of the last decade[J]. Environmental Science: Water Research & Technology, 2020, 6(11): 2949-2957
|
Liu C H, Chang V W C, Gin K Y H. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2323-2332
|
Bhhatarai B, Gramatica P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals[J]. Environmental Science & Technology, 2011, 45(19): 8120-8128
|
US Environmental Protection Agency. Guidelines for exposure assessment[R]. Washington DC: US Environmental Protection Agency, 1992
|