长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征

李明洋, 王锐, 李梓轩, 黄清辉, 尹大强. 长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征[J]. 生态毒理学报, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004
引用本文: 李明洋, 王锐, 李梓轩, 黄清辉, 尹大强. 长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征[J]. 生态毒理学报, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004
Li Mingyang, Wang Rui, Li Zixuan, Huang Qinghui, Yin Daqiang. Distribution and Fluorescence Characteristics of Dissolved Organic Matter along the Yangtze River Estuary-East China Sea Shelf Transect under Impacts of Freshwater-Seawater Mixing[J]. Asian journal of ecotoxicology, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004
Citation: Li Mingyang, Wang Rui, Li Zixuan, Huang Qinghui, Yin Daqiang. Distribution and Fluorescence Characteristics of Dissolved Organic Matter along the Yangtze River Estuary-East China Sea Shelf Transect under Impacts of Freshwater-Seawater Mixing[J]. Asian journal of ecotoxicology, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004

长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征

    作者简介: 李明洋(1997-),女,硕士研究生,研究方向为生态毒理学,E-mail:mingyangl@tongji.edu.cn
    通讯作者: 王锐, E-mail: wangr@tongji.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(42176152)

  • 中图分类号: X171.5

Distribution and Fluorescence Characteristics of Dissolved Organic Matter along the Yangtze River Estuary-East China Sea Shelf Transect under Impacts of Freshwater-Seawater Mixing

    Corresponding author: Wang Rui, wangr@tongji.edu.cn
  • Fund Project:
  • 摘要: 溶解性有机质(dissolved organic matter, DOM)在河口区域的分布特征和环境行为对于研究河口碳的生物地球化学循环具有重要意义。本文研究了受强烈咸淡水混合影响的长江口-东海内陆架断面14个研究点位水体DOM的分布和荧光特征,并进一步探究了其与水环境因子的关联。从淡水端到海水端,溶解性有机碳(DOC)浓度逐渐降低且与盐度呈显著负相关,表明长江输入的有机质在该水域占主导地位。基于三维荧光光谱-平行因子分析进一步解析荧光溶解有机质(FDOM)组分,识别出一个类蛋白组分C1(Ex/Em:278/320)和3个类腐殖质组分C2(Ex/Em:290/385)、C3(Ex/Em:254(341)/424)和C4(Ex/Em:275/501)。在强烈的长江口咸淡水混合影响下,该断面4个FDOM组分的荧光强度最大值(Fmax)均与盐度呈显著负相关关系。具体而言,3个类腐殖质组分的分布主要受长江源类腐殖质在咸淡水混合过程中的稀释效应控制,而C1组分在中低盐度区主要受稀释效应控制,但在高盐度区则主要源于海洋自生源类蛋白贡献。大部分点位荧光指数(FI)介于1.4~1.9之间,表明微生物源和陆源均对腐殖质有重要贡献。生物源指数(BIX)结果表明,中低盐度点位FDOM主要以外源输入为主,高盐度点位则主要来自自生源的贡献。所有研究点位腐殖化指数(HIX)均低于4,表明长江口水域DOM的腐殖化程度较低。
  • 加载中
  • Leenheer J A, Croué J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1):18A-26A
    Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710
    谢冰心, 王姝, 孙辉, 等. 溶解性有机质对持久性有机污染物环境行为的影响研究进展[J]. 环境污染与防治, 2020, 42(12):1563-1568

    Xie B X, Wang S, Sun H, et al. Impacts of dissolved organic matter on the environmental behavior of persistent organic pollutants:A review[J]. Environmental Pollution & Control, 2020, 42(12):1563-1568(in Chinese)

    Ravichandran M. Interactions between mercury and dissolved organic matter-A review[J]. Chemosphere, 2004, 55(3):319-331
    胡释尹, 李非里, 方小满. 溶解性有机质对自然水体中重金属生物有效性评价的影响[J]. 环境科学与技术, 2016, 39(1):27-31

    , 120 Hu S Y, Li F L, Fang X M. Effect of dissolved organic matter in evaluating heavy metals bioavailability in natural water[J]. Environmental Science & Technology, 2016, 39(1):27-31, 120(in Chinese)

    Coble P G. Marine optical biogeochemistry:The chemistry of ocean color[J]. Chemical Reviews, 2007, 107(2):402-418
    孙语嫣, 白莹, 苏荣国, 等. 长江口及邻近海域春夏季有色溶解有机物时空分布特征及主要影响因素[J]. 环境科学, 2017, 38(5):1863-1872

    Sun Y Y, Bai Y, Su R G, et al. Assessment of the spatial-temporal distribution characteristics and main affecting factors of chromophoric dissolved organic matter in spring and summer at the Changjiang Estuary and adjacent areas[J]. Environmental Science, 2017, 38(5):1863-1872(in Chinese)

    范诗雨, 秦纪洪, 刘堰杨, 等. 岷江上游水体中DOM光谱特征的季节变化[J]. 环境科学, 2018, 39(10):4530-4538

    Fan S Y, Qin J H, Liu Y Y, et al. Seasonal variations of DOM spectral characteristics in the surface water of the upstream Minjiang River[J]. Environmental Science, 2018, 39(10):4530-4538(in Chinese)

    倪茂飞, 周慧, 马永梅, 等. 典型喀斯特城市湖库溶解性有机质成分特征及来源解析[J]. 环境科学, 2022, 43(7):3552-3561

    Ni M F, Zhou H, Ma Y M, et al. Dissolved organic matter component and source characteristics of the metropolitan lakes and reservoirs in a typical Karst region[J]. Environmental Science, 2022, 43(7):3552-3561(in Chinese)

    Yang L Y, Cheng Q, Zhuang W E, et al. Seasonal changes in the chemical composition and reactivity of dissolved organic matter at the land-ocean interface of a subtropical river[J]. Environmental Science and Pollution Research International, 2019, 26(24):24595-24608
    Wang X C, Ma H Q, Li R H, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers:The Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2):GB2025
    Ning X, Lin C, Su J, et al. Long-term changes of dissolved oxygen, hypoxia, and the responses of the ecosystems in the East China Sea from 1975 to 1995[J]. Journal of Oceanography, 2011, 67(1):59-75
    刘承莹, 王锐, 高航, 等. 夏季长江口-东海陆架大中型浮游生物分布特征及影响因素[J]. 同济大学学报(自然科学版), 2021, 49(10):1363-1373, 1350 Liu C Y, Wang R, Gao H, et al. Distribution and factors influencing macro- and meso-plankton in the Yangtze River Estuary-East China Sea continental shelf in summer[J]. Journal of Tongji University (Natural Science), 2021, 49(10):1363-1373, 1350(in Chinese)
    张淑坤, 明玥, 高磊. 2020年夏季长江流域特大洪水期间长江口POC和DOC的分布特征[J]. 海洋环境科学, 2022, 41(5):653-659

    Zhang S K, Ming Y, Gao L. Distributions of POC and DOC in the Changjiang (Yangtze) River Estuary in response to the extreme flood occurring in the river basin in summer of 2020[J]. Marine Environmental Science, 2022, 41(5):653-659(in Chinese)

    马琳, 明玥, 高磊. 长江口及其邻近海域溶解无机碳的分布与转化[J]. 海洋科学进展, 2021, 39(4):557-569

    Ma L, Ming Y, Gao L. Distributions and transformations of dissolved inorganic carbon in the Changjiang (Yangtze River) Estuary and its adjacent sea area[J]. Advances in Marine Science, 2021, 39(4):557-569(in Chinese)

    叶君, 姚鹏, 徐亚宏, 等. 长江口盐度梯度下不同形态碳的分布、来源与混合行为[J]. 海洋学报, 2019, 41(4):15-26

    Ye J, Yao P, Xu Y H, et al. Distribution, sources and mixing behavior of different carbon species along a salinity gradient in the Changjiang Estuary[J]. Haiyang Xuebao, 2019, 41(4):15-26(in Chinese)

    张珊珊, 线薇微, 梁翠. 2015年秋季长江口有机碳的分布特征及其影响因素[J]. 海洋环境科学, 2018, 37(1):55-61

    Zhang S S, Xian W W, Liang C. Distribution characteristics of total organic carbon and influence factors in the Yangtze River Estuary in autumn 2015[J]. Marine Environmental Science, 2018, 37(1):55-61(in Chinese)

    王腾, 刘广鹏, 朱礼鑫, 等. 长江口邻近海域冬、夏季溶解有机碳分布特征及影响因子研究[J]. 海洋通报, 2014, 33(5):533-540

    Wang T, Liu G P, Zhu L X, et al. Distribution and controlling factors of the dissolved organic carbon in the adjacent sea area of the Yangtze Estuary in winter and summer[J]. Marine Science Bulletin, 2014, 33(5):533-540(in Chinese)

    闫丽红, 陈学君, 苏荣国, 等. 2010年秋季长江口口外海域CDOM的三维荧光光谱-平行因子分析[J]. 环境科学, 2013, 34(1):51-60

    Yan L H, Chen X J, Su R G, et al. Resolving characteristic of CDOM by excitation-emission matrix spectroscopy combined with parallel factor analysis in the seawater of outer Yangtze Estuary in autumn in 2010[J]. Environmental Science, 2013, 34(1):51-60(in Chinese)

    吕丽莎, 赵卫红, 苗辉. 三维荧光结合平行因子分析在东海溶解有机物研究中的应用[J]. 光谱学与光谱分析, 2013, 33(3):653-658

    Lü L S, Zhao W H, Miao H. Application of excitation-emission matrix spectrum combined with parallel factor analysis in dissolved organic matter in East China Sea[J]. Spectroscopy and Spectral Analysis, 2013, 33(3):653-658(in Chinese)

    顾丽军, 杨毅, 刘敏, 等. 长江口滨岸及近海水体中胶体的分布和理化性质研究[J]. 环境科学, 2013, 34(11):4195-4203

    Gu L J, Yang Y, Liu M, et al. Distribution and physicochemical properties of aquatic colloids in the Yangtze estuarine and coastal ecosystem[J]. Environmental Science, 2013, 34(11):4195-4203(in Chinese)

    Maie N, Parish K J, Watanabe A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta, 2006, 70(17):4491-4506
    Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6):706-719
    Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere, 1999, 38(1):45-50
    Jiang X Z, Lu B, He Y H. Response of the turbidity maximum zone to fluctuations in sediment discharge from river to estuary in the Changjiang Estuary (China)[J]. Estuarine, Coastal and Shelf Science, 2013, 131:24-30
    Wu J X, Liu J T, Wang X. Sediment trapping of turbidity maxima in the Changjiang Estuary[J]. Marine Geology, 2012, 303-306:14-25
    Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea:One of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64(4):399-408
    Chi L B, Song X X, Yuan Y Q, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, 125(1-2):440-450
    高源, 明玥, 高磊. 2019年长江口及其邻近海域溶解有机物的分布和季节变化特征[J]. 海洋环境科学, 2022, 41(1):40-47

    Gao Y, Ming Y, Gao L. Distributions and seasonal variations of dissolved organic matter (DOM) in the Changjiang (Yangtze River) Estuary and its adjacent area in 2019[J]. Marine Environmental Science, 2022, 41(1):40-47(in Chinese)

    张龙军, 宫萍, 张向上. 河口有机碳研究综述[J]. 中国海洋大学学报(自然科学版), 2005, 35(5):737-744, 842 Zhang L J, Gong P, Zhang X S. A review of the study of estuarine organic carbon[J]. Journal of Ocean University of Qingdao, 2005, 35(5):737-744, 842(in Chinese)
    Murphy K R, Stedmon C A, Wenig P, et al. OpenFluor-An online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3):658-661
    Coble P G, Del Castillo C E, Avril B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 1998, 45(10-11):2195-2223
    Li P H, Chen L, Zhang W, et al. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis[J]. PLoS One, 2015, 10(6):e0130852
    Huang X, Yan C X, Nie M H, et al. Effect of colloidal fluorescence properties on the complexation of chloramphenicol and carbamazepine to the natural aquatic colloids[J]. Chemosphere, 2022, 286(Pt 1):131604
    Guéguen C, Itoh M, Kikuchi T, et al. Variability in dissolved organic matter optical properties in surface waters in the Amerasian Basin[J]. Frontiers in Marine Science, 2015, 2:78
    陈子健, 黄国城, 孟凡刚. 不同分子尺寸溶解性有机物的光解行为研究[J]. 化学通报, 2018, 81(3):236-240

    Chen Z J, Huang G C, Meng F G. Photochemical degradation of the size-fractionated dissolved organic matter[J]. Chemistry, 2018, 81(3):236-240(in Chinese)

    孙欣, 宋贵生, Xie Huixiang. 长江口溶解有机物光漂白和光矿化表观量子产率[J]. 海洋学报, 2016, 38(4):120-129

    Sun X, Song G S, Xie H X. The apparent quantum yields of dissolved organic matter photobleaching and photomineralization in the Changjiang River Estuary[J]. Haiyang Xuebao, 2016, 38(4):120-129(in Chinese)

    Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2):686-697
    Wauthy M, Rautio M, Christoffersen K S, et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw[J]. Limnology and Oceanography Letters, 2018, 3(3):186-198
    Chen M L, Jung J, Lee Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean[J]. The Science of the Total Environment, 2018, 639:624-632
    Catalá T S, Reche I, Fuentes-Lema A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean[J]. Nature Communications, 2015, 6:5986
    Dainard P G, Guéguen C, Yamamoto-Kawai M, et al. Interannual variability in the absorption and fluorescence characteristics of dissolved organic matter in the Canada Basin polar mixed waters[J]. Journal of Geophysical Research:Oceans, 2019, 124(7):5258-5269
    Lapierre J F, del Giorgio P A. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks[J]. Biogeosciences, 2014, 11(20):5969-5985
    Chen Y L, Sun K, Sun H R, et al. Photodegradation of pyrogenic dissolved organic matter increases bioavailability:Novel insight into bioalteration, microbial community succession, and C and N dynamics[J]. Chemical Geology, 2022, 605:120964
    Zhang Y L, van Dijk M A, Liu M L, et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes:Field and experimental evidence[J]. Water Research, 2009, 43(18):4685-4697
    解李娜, 周斌, 刘梦, 等. 长江口及邻近海域有色溶解有机物的分布及河口混合行为的季节变化研究[J]. 海洋学报, 2021, 43(4):27-45

    Xie L N, Zhou B, Liu M, et al. Seasonal variability of distribution and mixing behavior of chromophoric dissolved organic matter in the Changjiang River Estuary and adjacent areas[J]. Haiyang Xuebao, 2021, 43(4):27-45(in Chinese)

    祁延明, 程艳, 李琳, 等. 西北内陆城市污水DOM特征及尾水对河流影响[J]. 环境科学与技术, 2022, 45(7):87-95

    Qi Y M, Cheng Y, Li L, et al. The DOM spectral characteristics of different types of sewage in and out of the inland urban section of northwest China and the influence of tail water on discharge rivers[J]. Environmental Science & Technology, 2022, 45(7):87-95(in Chinese)

    Sun X N, Li P H, Zhou Y P, et al. Linkages between optical and molecular signatures of dissolved organic matter along the Yangtze River Estuary-to-East China Sea Continuum[J]. Frontiers in Marine Science, 2022, 9:933561
    Fellman J B, D'Amore D V, Hood E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008, 88(2):169-184
    Stedmon C A, Markager S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis[J]. Limnology and Oceanography, 2005, 50(5):1415-1426
    Zhou Y P, Zhao C, He C, et al. Characterization of dissolved organic matter processing between surface sediment porewater and overlying bottom water in the Yangtze River Estuary[J]. Water Research, 2022, 215:118260
    Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21):8142-8149
  • 加载中
计量
  • 文章访问数:  2958
  • HTML全文浏览数:  2958
  • PDF下载数:  145
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-14
李明洋, 王锐, 李梓轩, 黄清辉, 尹大强. 长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征[J]. 生态毒理学报, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004
引用本文: 李明洋, 王锐, 李梓轩, 黄清辉, 尹大强. 长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征[J]. 生态毒理学报, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004
Li Mingyang, Wang Rui, Li Zixuan, Huang Qinghui, Yin Daqiang. Distribution and Fluorescence Characteristics of Dissolved Organic Matter along the Yangtze River Estuary-East China Sea Shelf Transect under Impacts of Freshwater-Seawater Mixing[J]. Asian journal of ecotoxicology, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004
Citation: Li Mingyang, Wang Rui, Li Zixuan, Huang Qinghui, Yin Daqiang. Distribution and Fluorescence Characteristics of Dissolved Organic Matter along the Yangtze River Estuary-East China Sea Shelf Transect under Impacts of Freshwater-Seawater Mixing[J]. Asian journal of ecotoxicology, 2022, 17(6): 15-28. doi: 10.7524/AJE.1673-5897.20221014004

长江口-东海陆架咸淡水混合影响下溶解性有机质的分布及荧光特征

    通讯作者: 王锐, E-mail: wangr@tongji.edu.cn
    作者简介: 李明洋(1997-),女,硕士研究生,研究方向为生态毒理学,E-mail:mingyangl@tongji.edu.cn
  • 同济大学环境科学与工程学院,长江水环境教育部重点实验室,上海 200092
基金项目:

国家自然科学基金面上项目(42176152)

摘要: 溶解性有机质(dissolved organic matter, DOM)在河口区域的分布特征和环境行为对于研究河口碳的生物地球化学循环具有重要意义。本文研究了受强烈咸淡水混合影响的长江口-东海内陆架断面14个研究点位水体DOM的分布和荧光特征,并进一步探究了其与水环境因子的关联。从淡水端到海水端,溶解性有机碳(DOC)浓度逐渐降低且与盐度呈显著负相关,表明长江输入的有机质在该水域占主导地位。基于三维荧光光谱-平行因子分析进一步解析荧光溶解有机质(FDOM)组分,识别出一个类蛋白组分C1(Ex/Em:278/320)和3个类腐殖质组分C2(Ex/Em:290/385)、C3(Ex/Em:254(341)/424)和C4(Ex/Em:275/501)。在强烈的长江口咸淡水混合影响下,该断面4个FDOM组分的荧光强度最大值(Fmax)均与盐度呈显著负相关关系。具体而言,3个类腐殖质组分的分布主要受长江源类腐殖质在咸淡水混合过程中的稀释效应控制,而C1组分在中低盐度区主要受稀释效应控制,但在高盐度区则主要源于海洋自生源类蛋白贡献。大部分点位荧光指数(FI)介于1.4~1.9之间,表明微生物源和陆源均对腐殖质有重要贡献。生物源指数(BIX)结果表明,中低盐度点位FDOM主要以外源输入为主,高盐度点位则主要来自自生源的贡献。所有研究点位腐殖化指数(HIX)均低于4,表明长江口水域DOM的腐殖化程度较低。

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回