海洋环境中持久性有机污染物的生物累积研究进展

刘亚雯, 李有绅, 杨忆菁, 陈茜茜, 王新红. 海洋环境中持久性有机污染物的生物累积研究进展[J]. 生态毒理学报, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001
引用本文: 刘亚雯, 李有绅, 杨忆菁, 陈茜茜, 王新红. 海洋环境中持久性有机污染物的生物累积研究进展[J]. 生态毒理学报, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001
Liu Yawen, Li Youshen, Yang Yijing, Chen Xixi, Wang Xinhong. Bioaccumulation and Trophic Magnification of Persistent Organic Pollutants in Marine Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001
Citation: Liu Yawen, Li Youshen, Yang Yijing, Chen Xixi, Wang Xinhong. Bioaccumulation and Trophic Magnification of Persistent Organic Pollutants in Marine Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001

海洋环境中持久性有机污染物的生物累积研究进展

    作者简介: 刘亚雯(1993-),女,博士,研究方向为生态毒理学,E-mail:yawenliu2535@163.com
    通讯作者: 王新红, E-mail: xhwang@xmu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(32071613,41961144011,41576115)

  • 中图分类号: X171.5

Bioaccumulation and Trophic Magnification of Persistent Organic Pollutants in Marine Environment

    Corresponding author: Wang Xinhong, xhwang@xmu.edu.cn
  • Fund Project:
  • 摘要: 20世纪以来化工产业飞速发展,传统及新型持久性有机污染物(persistent organic pollutants, POPs)伴随着生产和使用进入到海洋环境,对全球海洋生态系统造成了长期持续性的生态威胁。本文综述了POPs在海洋生物体内的富集浓度和特征,基于其理化性质、生物富集和食物链放大等相关参数评估了POPs在海洋环境中的生物富集和放大潜力,并探讨了环境和生物因素对POPs生物累积的影响。本文提出未来应进一步加强对全球海洋生态系统中POPs,特别是新型持久性有机污染物生物累积的相关研究,以期为海洋环境中POPs的生态风险管理和标准的制定提供科学支撑。
  • 加载中
  • 阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法[J]. 中国科学院院刊, 2020, 35(11):1328-1336

    Ruan T, Jiang G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11):1328-1336(in Chinese)

    Yang Y, Zhang X R, Jiang J Y, et al. Which micropollutants in water environments deserve more attention globally?[J]. Environmental Science & Technology, 2022, 56(1):13-29
    陈家苗, 王建设. 新型全氟和多氟烷醚类化合物的环境分布与毒性研究进展[J]. 生态毒理学报, 2020, 15(5):28-34

    Chen J M, Wang J S. Research progress in environmental distribution and toxicity of per-and polyfluoroalkyl ether substances[J]. Asian Journal of Ecotoxicology, 2020, 15(5):28-34(in Chinese)

    United Nations Environmental Programme. Stockholm Convention[EB/OL]. (2020-09-01)[2022-10-16]. http://pops.int.
    中国生态环境部. 重点管控新污染物清单(2022年版)(征求意见)[EB/OL].[2022-09-24]. https://www.mee.gov.cn/xxhk2018/xxgk/xxgk06/202209/t20220927_995054.html.
    O'Driscoll K, Mayer B, Ilyina T, et al. Modelling the cycling of persistent organic pollutants (POPs) in the North Sea system:Fluxes, loading, seasonality, trends[J]. Journal of Marine Systems, 2013, 111-112:69-82
    van Ael E, Covaci A, Das K, et al. Factors influencing the bioaccumulation of persistent organic pollutants in food webs of the Scheldt Estuary[J]. Environmental Science & Technology, 2013, 47(19):11221-11231
    Gobas F A, de Wolf W, Burkhard L P, et al. Revisiting bioaccumulation criteria for POPs and PBT assessments[J]. Integrated Environmental Assessment and Management, 2009, 5(4):624-637
    Berrojalbiz N, Lacorte S, Calbet A, et al. Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton[J]. Environmental Science & Technology, 2009, 43(7):2295-2301
    Gerofke A, K mp P, McLachlan M S. Bioconcentration of persistent organic pollutants in four species of marine phytoplankton[J]. Environmental Toxicology and Chemistry, 2005, 24(11):2908-2917
    Sobek A, McLachlan M S, Borgå K, et al. A comparison of PCB bioaccumulation factors between an Arctic and a temperate marine food web[J]. The Science of the Total Environment, 2010, 408(13):2753-2760
    Kim S K. Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem[J]. Environmental Engineering Research, 2020, 25(1):43-51
    Zhong H F, Zheng M G, Liang Y, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea:Occurrence, source apportionment and environmental risk assessment[J]. Chemosphere, 2021, 282:131042
    Sun Y X, Hao Q, Xu X R, et al. Persistent organic pollutants in marine fish from Yongxing Island, South China Sea:Levels, composition profiles and human dietary exposure assessment[J]. Chemosphere, 2014, 98:84-90
    Sun R X, Luo X J, Tang B, et al. Short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary in South China:Residue levels and interspecies differences[J]. The Science of the Total Environment, 2016, 553:196-203
    Martín J, Hidalgo F, García-Corcoles M T, et al. Bioaccumulation of perfluoroalkyl substances in marine echinoderms:Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791[J]. Chemosphere, 2019, 215:261-271
    姚文君, 薛文平, 国文, 等. 环渤海近岸海域表层沉积物及底栖生物中PBDEs的赋存特征及富集行为[J]. 生态毒理学报, 2016, 11(2):413-420

    Yao W J, Xue W P, Guo W, et al. Occurrence and bioaccumulation of polybrominated diphenyl ethers(PBDEs) in surficial sediment and benthic organism in the Bohai Sea[J]. Asian Journal of Ecotoxicology, 2016, 11(2):413-420(in Chinese)

    Ali N, Ali L N, Eqani S A, et al. Organohalogenated contaminants in sediments and bivalves from the northern Arabian Gulf[J]. Ecotoxicology and Environmental Safety, 2015, 122:432-439
    Zhang C C, Li Y L, Wang C L, et al. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China:Bioaccumulation and human health risk assessment[J]. Marine Pollution Bulletin, 2020, 153:110995
    Xiang N, Jiang C X, Yang T H, et al. Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in seawater, sediments and corals from Hainan Island, China[J]. Ecotoxicology and Environmental Safety, 2018, 152:8-15
    Thomann R V, Komlos J. Model of biota-sediment accumulation factor for polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 1999, 18(5):1060-1068
    Borgå K, Kidd K A, Muir D C, et al. Trophic magnification factors:Considerations of ecology, ecosystems, and study design[J]. Integrated Environmental Assessment and Management, 2012, 8(1):64-84
    Borgå K, Fisk A T, Hoekstra P E, et al. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs[J]. Environmental Toxicology and Chemistry, 2004, 23(10):2367-2385
    Kelly B C, Gobas F A P C. An Arctic terrestrial food-chain bioaccumulation model for persistent organic pollutants[J]. Environmental Science & Technology, 2003, 37(13):2966-2974
    Landrum P F. Toxicokinetics of organic xenobiotics in the amphipod, Pontoporeia hoyi: role of physiological and environmental variables[J]. Aquatic Toxicology, 1988, 12(3):245-271
    O'Connor A T, Robinson D, Dasgupta T P, et al. Bioaccumulation of polychlorinated biphenyls (PCBs) in Atlantic Sea bream (Archosargus rhomboidalis) from Kingston Harbour, Jamaica[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(3):328-332
    Bustnes J O, Bårdsen B J, Herzke D, et al. Plasma concentrations of organohalogenated pollutants in predatory bird nestlings:Associations to growth rate and dietary tracers[J]. Environmental Toxicology and Chemistry, 2013, 32(11):2520-2527
    Tuerk K J S, Kucklick J R, Becker P R, et al. Persistent organic pollutants in two dolphin species with focus on toxaphene and polybrominated diphenyl ethers[J]. Environmental Science & Technology, 2005, 39(3):692-698
    Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, et al. Emerging POPs-type cocktail signatures in Pusa caspica in quantitative structure-activity relationship of Caspian Sea[J]. Journal of Hazardous Materials, 2021, 406:124334
    Tanabe S, Iwata H, Tatsukawa R. Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals[J]. Science of the Total Environment, 1994, 154(2-3):163-177
    Zhou S S, Pan Y Q, Zhang L N, et al. Biomagnification and enantiomeric profiles of organochlorine pesticides in food web components from Zhoushan Fishing Ground, China[J]. Marine Pollution Bulletin, 2018, 131(Pt A):602-610
    Sun Y X, Hu Y X, Zhang Z W, et al. Halogenated organic pollutants in marine biota from the Xuande Atoll, South China Sea:Levels, biomagnification and dietary exposure[J]. Marine Pollution Bulletin, 2017, 118(1-2):413-419
    Carro N, Cobas J, García I, et al. Organochlorine compounds and polycyclic aromatic hydrocarbons in mussels from Ria de Vigo (the Northern Spanish coast). Current levels and long-term trends (2010-2019). Relationship with human pressures[J]. Regional Studies in Marine Science, 2021, 44:101742
    Olisah C, Okoh O O, Okoh A I. Distribution of organochlorine pesticides in fresh fish carcasses from selected estuaries in Eastern Cape Province, South Africa, and the associated health risk assessment[J]. Marine Pollution Bulletin, 2019, 149:110605
    García-Alvarez N, Martín V, Fernández A, et al. Levels and profiles of POPs (organochlorine pesticides, PCBs, and PAHs) in free-ranging common bottlenose dolphins of the Canary Islands, Spain[J]. The Science of the Total Environment, 2014, 493:22-31
    Gui D, Yu R Q, He X, et al. Tissue distribution and fate of persistent organic pollutants in Indo-Pacific humpback dolphins from the Pearl River Estuary, China[J]. Marine Pollution Bulletin, 2014, 86(1-2):266-273
    Pouch A, Zaborska A, Dąbrowska A M, et al. Bioaccumulation of PCBs, HCB and PAHs in the summer plankton from West Spitsbergen Fjords[J]. Marine Pollution Bulletin, 2022, 177:113488
    Han M W, Liu F, Kang Y R, et al. Occurrence, distribution, sources, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in multi environmental media in estuaries and the coast of the Beibu Gulf, China:A health risk assessment through seafood consumption[J]. Environmental Science and Pollution Research International, 2022, 29(35):52493-52506
    Han M W, Li H L, Kang Y R, et al. Bioaccumulation and trophic transfer of PAHs in tropical marine food webs from coral reef ecosystems, the South China Sea:Compositional pattern, driving factors, ecological aspects, and risk assessment[J]. Chemosphere, 2022, 308(Pt 1):136295
    Li H Y, Wang X S, Peng S Y, et al. Seasonal variation of temperature affects HMW-PAH accumulation in fishery species by bacterially mediated LMW-PAH degradation[J]. The Science of the Total Environment, 2022, 853:158617
    Moon H B, An Y R, Park K J, et al. Occurrence and accumulation features of polycyclic aromatic hydrocarbons and synthetic musk compounds in finless porpoises (Neophocaena phocaenoides) from Korean coastal waters[J]. Marine Pollution Bulletin, 2011, 62(9):1963-1968
    Castro-Jiménez J, Bǎnaru D, Chen C T, et al. Persistent organic pollutants burden, trophic magnification and risk in a pelagic food web from coastal NW Mediterranean Sea[J]. Environmental Science & Technology, 2021, 55(14):9557-9568
    Mizukawa K, Takada H, Takeuchi I, et al. Bioconcentration and biomagnification of polybrominated diphenyl ethers (PBDEs) through lower-trophic-level coastal marine food web[J]. Marine Pollution Bulletin, 2009, 58(8):1217-1224
    Conn K E, Liedtke T L, Takesue R K, et al. Legacy and current-use toxic contaminants in Pacific sand lance (Ammodytes personatus) from Puget Sound, Washington, USA[J]. Marine Pollution Bulletin, 2020, 158:111287
    Borrell A, Tornero V, Bhattacharjee D, et al. Organochlorine concentrations in aquatic organisms from different trophic levels of the Sundarbans mangrove ecosystem and their implications for human consumption[J]. Environmental Pollution, 2019, 251:681-688
    Sun Y X, Zhang Z W, Xu X R, et al. Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2015, 99(1-2):150-156
    Megson D, Brown T, Jones G R, et al. Polychlorinated biphenyl (PCB) concentrations and profiles in marine mammals from the North Atlantic Ocean[J]. Chemosphere, 2022, 288(Pt 3):132639
    Pinzone M, Budzinski H, Tasciotti A, et al. POPs in free-ranging pilot whales, sperm whales and fin whales from the Mediterranean Sea:Influence of biological and ecological factors[J]. Environmental Research, 2015, 142:185-196
    Choo G, Lee I S, Oh J E. Species and habitat-dependent accumulation and biomagnification of brominated flame retardants and PBDE metabolites[J]. Journal of Hazardous Materials, 2019, 371:175-182
    Barón E, Giménez J, Verborgh P, et al. Bioaccumulation and biomagnification of classical flame retardants, related halogenated natural compounds and alternative flame retardants in three delphinids from Southern European waters[J]. Environmental Pollution, 2015, 203:107-115
    Li H J, Fu J J, Zhang A Q, et al. Occurrence, bioaccumulation and long-range transport of short-chain chlorinated paraffins on the Fildes Peninsula at King George Island, Antarctica[J]. Environment International, 2016, 94:408-414
    Ma X D, Zhang H J, Wang Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environmental Science & Technology, 2014, 48(10):5964-5971
    Huang Y M, Chen L G, Jiang G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. The Science of the Total Environment, 2019, 671:262-269
    Zeng L X, Lam J C W, Chen H, et al. Tracking dietary sources of short- and medium-chain chlorinated paraffins in marine mammals through a subtropical marine food web[J]. Environmental Science & Technology, 2017, 51(17):9543-9552
    de Wit C A, Bossi R, Dietz R, et al. Organohalogen compounds of emerging concern in Baltic Sea biota:Levels, biomagnification potential and comparisons with legacy contaminants[J]. Environment International, 2020, 144:106037
    Facciola N, Pedro S, Houde M, et al. Measurable levels of short-chain chlorinated paraffins in western Hudson Bay fishes but limited biomagnification from fish to ringed seals[J]. Environmental Toxicology and Chemistry, 2021, 40(11):2990-2999
    Zeng L X, Lam J C W, Wang Y W, et al. Temporal trends and pattern changes of short- and medium-chain chlorinated paraffins in marine mammals from the South China Sea over the past decade[J]. Environmental Science & Technology, 2015, 49(19):11348-11355
    Yuan B, McLachlan M S, Roos A M, et al. Long-chain chlorinated paraffins have reached the Arctic[J]. Environmental Science & Technology Letters, 2021, 8(9):753-759
    Ali A M, Langberg H A, Hale S E, et al. The fate of poly- and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic[J]. Environmental Science Processes & Impacts, 2021, 23(4):588-604
    Cara B, Lies T, Thimo G, et al. Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea:Distribution and human health risk implications[J]. Environmental Pollution, 2022, 311:119907
    Haukås M, Berger U, Hop H, et al. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web[J]. Environmental Pollution, 2007, 148(1):360-371
    Munoz G, Budzinski H, Babut M, et al. Evidence for the trophic transfer of perfluoroalkylated substances in a temperate macrotidal estuary[J]. Environmental Science & Technology, 2017, 51(15):8450-8459
    Boisvert G, Sonne C, Rigét F F, et al. Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey[J]. Environmental Pollution, 2019, 252(Pt B):1335-1343
    Zhang B, He Y, Yang G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea:Temporal trends and tissue-specific accumulation[J]. Environmental Science & Technology, 2022, 56(10):6113-6122
    Jurado E, Jaward F, Lohmann R, et al. Wet deposition of persistent organic pollutants to the global oceans[J]. Environmental Science & Technology, 2005, 39(8):2426-2435
    Bustnes J O, Borgå K, Dempster T, et al. Latitudinal distribution of persistent organic pollutants in pelagic and demersal marine fish on the Norwegian Coast[J]. Environmental Science & Technology, 2012, 46(14):7836-7843
    Vorkamp K, Balmer J, Hung H, et al. A review of chlorinated paraffin contamination in Arctic ecosystems[J]. Emerging Contaminants, 2019, 5:219-231
    Teuten E L, Rowland S J, Galloway T S, et al. Potential for plastics to transport hydrophobic contaminants[J]. Environmental Science & Technology, 2007, 41(22):7759-7764
    Koelmans A A. Modeling the Role of Microplastics in Bioaccumulation of Organic Chemicals to Marine Aquatic Organisms. A Critical Review[M]//Marine Anthropogenic Litter. Cham:Springer International Publishing, 2015:309-324
    Koelmans A A, Bakir A, Burton G A, et al. Microplastic as a vector for chemicals in the aquatic environment:Critical review and model-supported reinterpretation of empirical studies[J]. Environmental Science & Technology, 2016, 50(7):3315-3326
    Nfon E, Cousins I T, Broman D. Biomagnification of organic pollutants in benthic and pelagic marine food chains from the Baltic Sea[J]. The Science of the Total Environment, 2008, 397(1-3):190-204
    Hop H, Borgá K, Gabrielsen G W, et al. Food web magnificaton of persistent organic pollutants in poikilotherms and homeotherms[J]. Environmental Science & Technology, 2002, 36(12):2589-2597
    Borgå K, Gabrielsen G W, Skaare J U. Biomagnification of organochlorines along a Barents Sea food chain[J]. Environmental Pollution, 2001, 113(2):187-198
    Northcott G L, Jones K C. Partitioning, extractability, and formation of nonextractable PAH residues in soil. 2. Effects on compound dissolution behavior[J]. Environmental Science & Technology, 2001, 35(6):1111-1117
    Wan Y, Jin X H, Hu J Y, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, North China[J]. Environmental Science & Technology, 2007, 41(9):3109-3114
    Takeuchi I, Miyoshi N, Mizukawa K, et al. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by delta 13C and delta 15N isotope ratios as guides to trophic web structure[J]. Marine Pollution Bulletin, 2009, 58(5):663-671
    Akhbarizadeh R, Moore F, Keshavarzi B. Polycyclic aromatic hydrocarbons and potentially toxic elements in seafood from the Persian Gulf:Presence, trophic transfer, and chronic intake risk assessment[J]. Environmental Geochemistry and Health, 2019, 41(6):2803-2820
    Malmquist L M, Selck H, Jørgensen K B, et al. Polycyclic aromatic acids are primary metabolites of alkyl-PAHs-A case study with Nereis diversicolor[J]. Environmental Science & Technology, 2015, 49(9):5713-5721
    于海瀛. 部分有机化合物空气/颗粒物分配系数与正辛醇/空气分配系数的预测研究[D]. 大连:大连理工大学, 2008:75-78 Yu H Y. Prediction for gas-particle partition coefficient and octanol-air partition coefficient of selected organic compounds[D]. Dalian:Dalian University of Technology, 2008:75

    -78(in Chinese)

    Prince K D, Taylor S D, Angelini C. A global, cross-system meta-analysis of polychlorinated biphenyl biomagnification[J]. Environmental Science & Technology, 2020, 54(18):10989-11001
    Walters D M, Mills M A, Cade B S, et al. Trophic magnification of PCBs and its relationship to the octanol-water partition coefficient[J]. Environmental Science & Technology, 2011, 45(9):3917-3924
    Buckman A H, Wong C S, Chow E A, et al. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish[J]. Aquatic Toxicology, 2006, 78(2):176-185
    Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants[J]. Science, 2007, 317(5835):236-239
    Kucklick J, Schwacke L, Wells R, et al. Bottlenose dolphins as indicators of persistent organic pollutants in the western North Atlantic Ocean and northern Gulf of Mexico[J]. Environmental Science & Technology, 2011, 45(10):4270-4277
    García-Álvarez N, Boada L D, Fernández A, et al. Assessment of the levels of polycyclic aromatic hydrocarbons and organochlorine contaminants in bottlenose dolphins (Tursiops truncatus) from the Eastern Atlantic Ocean[J]. Marine Environmental Research, 2014, 100:48-56
    Boon J P, Oostingh I, van der Meer J, et al. A model for the bioaccumulation of chlorobiphenyl congeners in marine mammals[J]. European Journal of Pharmacology, 1994, 270(2-3):237-251
    Boon J P, van der Meer J, Allchin C R, et al. Concentration-dependent changes of PCB patterns in fish-eating mammals:Structural evidence for induction of cytochrome P450[J]. Archives of Environmental Contamination and Toxicology, 1997, 33(3):298-311
    Kannan N, Reusch T B, Schulz-Bull D E, et al. Chlorobiphenyls:Model compounds for metabolism in food chain organisms and their potential use as ecotoxicological stress indicators by application of the metabolic slope concept[J]. Environmental Science & Technology, 1995, 29(7):1851-1859
    Hoekstra P F, Wong C S, O'Hara T M, et al. Enantiomer-specific accumulation of PCB atropisomers in the bowhead whale (Balaena mysticetus)[J]. Environmental Science & Technology, 2002, 36(7):1419-1425
    Tanabe S, Watanabe S, Kan H, et al. Capacity and mode of PCB metabolism in small cetaceans1[J]. Marine Mammal Science, 1988, 4(2):103-124
    Lavandier R, Arêas J, Quinete N, et al. PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast[J]. Environmental Pollution, 2016, 208(Pt B):442-449
    Letcher R J, Morris A D, Dyck M, et al. Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada[J]. The Science of the Total Environment, 2018, 610-611:121-136
    Dorneles P R, Lailson-Brito J, Dirtu A C, et al. Anthropogenic and naturally-produced organobrominated compounds in marine mammals from Brazil[J]. Environment International, 2010, 36(1):60-67
    Shao M H, Tao P, Wang M, et al. Trophic magnification of polybrominated diphenyl ethers in the marine food web from coastal area of Bohai Bay, North China[J]. Environmental Pollution, 2016, 213:379-385
    Thomann R V. Bioaccumulation model of organic chemical distribution in aquatic food chains[J]. Environmental Science & Technology, 1989, 23(6):699-707
    Stapleton H M, Letcher R J, Baker J E. Debromination of polybrominated diphenyl ether congeners BDE 99 and BDE 183 in the intestinal tract of the common carp (Cyprinus carpio)[J]. Environmental Science & Technology, 2004, 38(4):1054-1061
    Mizukawa K, Yamada T, Matsuo H, et al. Biomagnification and debromination of polybrominated diphenyl ethers in a coastal ecosystem in Tokyo Bay[J]. The Science of the Total Environment, 2013, 449:401-409
    Zheng B H, Zhao X R, Ni X J, et al. Bioaccumulation characteristics of polybrominated diphenyl ethers in the marine food web of Bohai Bay[J]. Chemosphere, 2016, 150:424-430
    van Mourik L M, Gaus C, Leonards P E G, et al. Chlorinated paraffins in the environment:A review on their production, fate, levels and trends between 2010 and 2015[J]. Chemosphere, 2016, 155:415-428
    Scheringer M. Characterization of the environmental distribution behavior of organic chemicals by means of persistence and spatial range[J]. Environmental Science & Technology, 1997, 31(10):2891-2897
    Li C, Xie H B, Chen J W, et al. Predicting gaseous reaction rates of short chain chlorinated paraffins with·OH:Overcoming the difficulty in experimental determination[J]. Environmental Science & Technology, 2014, 48(23):13808-13816
    Huang H T, Gao L R, Xia D, et al. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China[J]. Scientific Reports, 2017, 7(1):10749
    Ma X D, Zhang H J, Yao Z W, et al. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers (PBDEs) in a marine food web from Liaodong Bay, North China[J]. Marine Pollution Bulletin, 2013, 74(1):110-115
    Wan Y, Hu J Y, Yang M, et al. Characterization of trophic transfer for polychlorinated dibenzo-p-dioxins, dibenzofurans, non- and mono-ortho polychlorinated biphenyls in the marine food web of Bohai Bay, North China[J]. Environmental Science & Technology, 2005, 39(8):2417-2425
    Goecke-Flora C M, Reo N V. Influence of carbon chain length on the hepatic effects of perfluorinated fatty acids. A 19F- and 31P-NMR investigation[J]. Chemical Research in Toxicology, 1996, 9(4):689-695
    Martin J W, Mabury S A, Solomon K R, et al. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2003, 22(1):196-204
    Hoekman D. Exploring QSAR fundamentals and applications in chemistry and biology[J]. Journal of the American Chemical Society, 1996, 118(43):10678
    Conder J M, Hoke R A, de Wolf W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds[J]. Environmental Science & Technology, 2008, 42(4):995-1003
    Butt C M, Mabury S A, Kwan M, et al. Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida) from the Canadian Arctic[J]. Environmental Toxicology and Chemistry, 2008, 27(3):542-553
    Kannan K. Perfluoroalkyl and polyfluoroalkyl substances:Current and future perspectives[J]. Environmental Chemistry, 2011, 8(4):333
    Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arctic marine food web[J]. Environmental Science & Technology, 2004, 38(24):6475-6481
    Galatius A, Bossi R, Sonne C, et al. PFAS profiles in three North Sea top predators:Metabolic differences among species?[J]. Environmental Science and Pollution Research International, 2013, 20(11):8013-8020
    Miranda D A, Peaslee G F, Zachritz A M, et al. A worldwide evaluation of trophic magnification of per- and polyfluoroalkyl substances in aquatic ecosystems[J]. Integrated Environmental Assessment and Management, 2022, 18(6):1500-1512
    Gebbink W A, Bossi R, Rigét F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144:2384-2391
    Rayne S, Forest K. Perfluoroalkyl contaminants in an Arctic marine food web:Trophic magnification and wildlife exposure[J]. Environmental Science & Technology, 2009, 43(11):4037-4043
    Liu Y W, Ruan T, Lin Y F, et al. Chlorinated polyfluoroalkyl ether sulfonic acids in marine organisms from Bohai Sea, China:Occurrence, temporal variations, and trophic transfer behavior[J]. Environmental Science & Technology, 2017, 51(8):4407-4414
    Li Y N, Yao J Z, Zhang J, et al. First report on the bioaccumulation and trophic transfer of perfluoroalkyl ether carboxylic acids in estuarine food web[J]. Environmental Science & Technology, 2022, 56(10):6046-6055
  • 加载中
计量
  • 文章访问数:  3874
  • HTML全文浏览数:  3874
  • PDF下载数:  259
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-16
刘亚雯, 李有绅, 杨忆菁, 陈茜茜, 王新红. 海洋环境中持久性有机污染物的生物累积研究进展[J]. 生态毒理学报, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001
引用本文: 刘亚雯, 李有绅, 杨忆菁, 陈茜茜, 王新红. 海洋环境中持久性有机污染物的生物累积研究进展[J]. 生态毒理学报, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001
Liu Yawen, Li Youshen, Yang Yijing, Chen Xixi, Wang Xinhong. Bioaccumulation and Trophic Magnification of Persistent Organic Pollutants in Marine Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001
Citation: Liu Yawen, Li Youshen, Yang Yijing, Chen Xixi, Wang Xinhong. Bioaccumulation and Trophic Magnification of Persistent Organic Pollutants in Marine Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 1-14. doi: 10.7524/AJE.1673-5897.20221016001

海洋环境中持久性有机污染物的生物累积研究进展

    通讯作者: 王新红, E-mail: xhwang@xmu.edu.cn
    作者简介: 刘亚雯(1993-),女,博士,研究方向为生态毒理学,E-mail:yawenliu2535@163.com
  • 近海海洋环境科学国家重点实验室,厦门大学环境与生态学院,厦门 361102
基金项目:

国家自然科学基金面上项目(32071613,41961144011,41576115)

摘要: 20世纪以来化工产业飞速发展,传统及新型持久性有机污染物(persistent organic pollutants, POPs)伴随着生产和使用进入到海洋环境,对全球海洋生态系统造成了长期持续性的生态威胁。本文综述了POPs在海洋生物体内的富集浓度和特征,基于其理化性质、生物富集和食物链放大等相关参数评估了POPs在海洋环境中的生物富集和放大潜力,并探讨了环境和生物因素对POPs生物累积的影响。本文提出未来应进一步加强对全球海洋生态系统中POPs,特别是新型持久性有机污染物生物累积的相关研究,以期为海洋环境中POPs的生态风险管理和标准的制定提供科学支撑。

English Abstract

参考文献 (117)

返回顶部

目录

/

返回文章
返回