海洋环境中持久性有机污染物的生物累积研究进展
Bioaccumulation and Trophic Magnification of Persistent Organic Pollutants in Marine Environment
-
摘要: 20世纪以来化工产业飞速发展,传统及新型持久性有机污染物(persistent organic pollutants, POPs)伴随着生产和使用进入到海洋环境,对全球海洋生态系统造成了长期持续性的生态威胁。本文综述了POPs在海洋生物体内的富集浓度和特征,基于其理化性质、生物富集和食物链放大等相关参数评估了POPs在海洋环境中的生物富集和放大潜力,并探讨了环境和生物因素对POPs生物累积的影响。本文提出未来应进一步加强对全球海洋生态系统中POPs,特别是新型持久性有机污染物生物累积的相关研究,以期为海洋环境中POPs的生态风险管理和标准的制定提供科学支撑。Abstract: With the rapid development of the chemical industry since the 20th Century, legacy and emerging persistent organic pollutants (POPs) have been posing a long-term and persistent ecological threat to the global marine ecosystem. This paper reviewed the bioaccumulation patterns of common detected legacy and emerging POPs in the marine environment, assessed the bioaccumulation and trophic magnification potential of POPs based on the physicochemical properties, bioconcentration and bioaccumulation factor, and trophic magnification factor. The influence of marine environmental and biological factors on the bioaccumulation and trophic magnification of POPs was also discussed. This paper proposed that the persistence and accumulation of POPs especially for the emerging persistent organic pollutants in global marine ecosystems should be further strengthened to provide scientific support for the ecological risk management and the development of standards for POPs in the marine environment.
-
-
阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法[J]. 中国科学院院刊, 2020, 35(11):1328-1336 Ruan T, Jiang G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11):1328-1336(in Chinese)
Yang Y, Zhang X R, Jiang J Y, et al. Which micropollutants in water environments deserve more attention globally?[J]. Environmental Science & Technology, 2022, 56(1):13-29 陈家苗, 王建设. 新型全氟和多氟烷醚类化合物的环境分布与毒性研究进展[J]. 生态毒理学报, 2020, 15(5):28-34 Chen J M, Wang J S. Research progress in environmental distribution and toxicity of per-and polyfluoroalkyl ether substances[J]. Asian Journal of Ecotoxicology, 2020, 15(5):28-34(in Chinese)
United Nations Environmental Programme. Stockholm Convention[EB/OL]. (2020-09-01)[2022-10-16]. http://pops.int. 中国生态环境部. 重点管控新污染物清单(2022年版)(征求意见)[EB/OL].[2022-09-24]. https://www.mee.gov.cn/xxhk2018/xxgk/xxgk06/202209/t20220927_995054.html. O'Driscoll K, Mayer B, Ilyina T, et al. Modelling the cycling of persistent organic pollutants (POPs) in the North Sea system:Fluxes, loading, seasonality, trends[J]. Journal of Marine Systems, 2013, 111-112:69-82 van Ael E, Covaci A, Das K, et al. Factors influencing the bioaccumulation of persistent organic pollutants in food webs of the Scheldt Estuary[J]. Environmental Science & Technology, 2013, 47(19):11221-11231 Gobas F A, de Wolf W, Burkhard L P, et al. Revisiting bioaccumulation criteria for POPs and PBT assessments[J]. Integrated Environmental Assessment and Management, 2009, 5(4):624-637 Berrojalbiz N, Lacorte S, Calbet A, et al. Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton[J]. Environmental Science & Technology, 2009, 43(7):2295-2301 Gerofke A, K mp P, McLachlan M S. Bioconcentration of persistent organic pollutants in four species of marine phytoplankton[J]. Environmental Toxicology and Chemistry, 2005, 24(11):2908-2917 Sobek A, McLachlan M S, Borgå K, et al. A comparison of PCB bioaccumulation factors between an Arctic and a temperate marine food web[J]. The Science of the Total Environment, 2010, 408(13):2753-2760 Kim S K. Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem[J]. Environmental Engineering Research, 2020, 25(1):43-51 Zhong H F, Zheng M G, Liang Y, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea:Occurrence, source apportionment and environmental risk assessment[J]. Chemosphere, 2021, 282:131042 Sun Y X, Hao Q, Xu X R, et al. Persistent organic pollutants in marine fish from Yongxing Island, South China Sea:Levels, composition profiles and human dietary exposure assessment[J]. Chemosphere, 2014, 98:84-90 Sun R X, Luo X J, Tang B, et al. Short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary in South China:Residue levels and interspecies differences[J]. The Science of the Total Environment, 2016, 553:196-203 Martín J, Hidalgo F, García-Corcoles M T, et al. Bioaccumulation of perfluoroalkyl substances in marine echinoderms:Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791[J]. Chemosphere, 2019, 215:261-271 姚文君, 薛文平, 国文, 等. 环渤海近岸海域表层沉积物及底栖生物中PBDEs的赋存特征及富集行为[J]. 生态毒理学报, 2016, 11(2):413-420 Yao W J, Xue W P, Guo W, et al. Occurrence and bioaccumulation of polybrominated diphenyl ethers(PBDEs) in surficial sediment and benthic organism in the Bohai Sea[J]. Asian Journal of Ecotoxicology, 2016, 11(2):413-420(in Chinese)
Ali N, Ali L N, Eqani S A, et al. Organohalogenated contaminants in sediments and bivalves from the northern Arabian Gulf[J]. Ecotoxicology and Environmental Safety, 2015, 122:432-439 Zhang C C, Li Y L, Wang C L, et al. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China:Bioaccumulation and human health risk assessment[J]. Marine Pollution Bulletin, 2020, 153:110995 Xiang N, Jiang C X, Yang T H, et al. Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in seawater, sediments and corals from Hainan Island, China[J]. Ecotoxicology and Environmental Safety, 2018, 152:8-15 Thomann R V, Komlos J. Model of biota-sediment accumulation factor for polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 1999, 18(5):1060-1068 Borgå K, Kidd K A, Muir D C, et al. Trophic magnification factors:Considerations of ecology, ecosystems, and study design[J]. Integrated Environmental Assessment and Management, 2012, 8(1):64-84 Borgå K, Fisk A T, Hoekstra P E, et al. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs[J]. Environmental Toxicology and Chemistry, 2004, 23(10):2367-2385 Kelly B C, Gobas F A P C. An Arctic terrestrial food-chain bioaccumulation model for persistent organic pollutants[J]. Environmental Science & Technology, 2003, 37(13):2966-2974 Landrum P F. Toxicokinetics of organic xenobiotics in the amphipod, Pontoporeia hoyi: role of physiological and environmental variables[J]. Aquatic Toxicology, 1988, 12(3):245-271 O'Connor A T, Robinson D, Dasgupta T P, et al. Bioaccumulation of polychlorinated biphenyls (PCBs) in Atlantic Sea bream (Archosargus rhomboidalis) from Kingston Harbour, Jamaica[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(3):328-332 Bustnes J O, Bårdsen B J, Herzke D, et al. Plasma concentrations of organohalogenated pollutants in predatory bird nestlings:Associations to growth rate and dietary tracers[J]. Environmental Toxicology and Chemistry, 2013, 32(11):2520-2527 Tuerk K J S, Kucklick J R, Becker P R, et al. Persistent organic pollutants in two dolphin species with focus on toxaphene and polybrominated diphenyl ethers[J]. Environmental Science & Technology, 2005, 39(3):692-698 Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, et al. Emerging POPs-type cocktail signatures in Pusa caspica in quantitative structure-activity relationship of Caspian Sea[J]. Journal of Hazardous Materials, 2021, 406:124334 Tanabe S, Iwata H, Tatsukawa R. Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals[J]. Science of the Total Environment, 1994, 154(2-3):163-177 Zhou S S, Pan Y Q, Zhang L N, et al. Biomagnification and enantiomeric profiles of organochlorine pesticides in food web components from Zhoushan Fishing Ground, China[J]. Marine Pollution Bulletin, 2018, 131(Pt A):602-610 Sun Y X, Hu Y X, Zhang Z W, et al. Halogenated organic pollutants in marine biota from the Xuande Atoll, South China Sea:Levels, biomagnification and dietary exposure[J]. Marine Pollution Bulletin, 2017, 118(1-2):413-419 Carro N, Cobas J, García I, et al. Organochlorine compounds and polycyclic aromatic hydrocarbons in mussels from Ria de Vigo (the Northern Spanish coast). Current levels and long-term trends (2010-2019). Relationship with human pressures[J]. Regional Studies in Marine Science, 2021, 44:101742 Olisah C, Okoh O O, Okoh A I. Distribution of organochlorine pesticides in fresh fish carcasses from selected estuaries in Eastern Cape Province, South Africa, and the associated health risk assessment[J]. Marine Pollution Bulletin, 2019, 149:110605 García-Alvarez N, Martín V, Fernández A, et al. Levels and profiles of POPs (organochlorine pesticides, PCBs, and PAHs) in free-ranging common bottlenose dolphins of the Canary Islands, Spain[J]. The Science of the Total Environment, 2014, 493:22-31 Gui D, Yu R Q, He X, et al. Tissue distribution and fate of persistent organic pollutants in Indo-Pacific humpback dolphins from the Pearl River Estuary, China[J]. Marine Pollution Bulletin, 2014, 86(1-2):266-273 Pouch A, Zaborska A, Dąbrowska A M, et al. Bioaccumulation of PCBs, HCB and PAHs in the summer plankton from West Spitsbergen Fjords[J]. Marine Pollution Bulletin, 2022, 177:113488 Han M W, Liu F, Kang Y R, et al. Occurrence, distribution, sources, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in multi environmental media in estuaries and the coast of the Beibu Gulf, China:A health risk assessment through seafood consumption[J]. Environmental Science and Pollution Research International, 2022, 29(35):52493-52506 Han M W, Li H L, Kang Y R, et al. Bioaccumulation and trophic transfer of PAHs in tropical marine food webs from coral reef ecosystems, the South China Sea:Compositional pattern, driving factors, ecological aspects, and risk assessment[J]. Chemosphere, 2022, 308(Pt 1):136295 Li H Y, Wang X S, Peng S Y, et al. Seasonal variation of temperature affects HMW-PAH accumulation in fishery species by bacterially mediated LMW-PAH degradation[J]. The Science of the Total Environment, 2022, 853:158617 Moon H B, An Y R, Park K J, et al. Occurrence and accumulation features of polycyclic aromatic hydrocarbons and synthetic musk compounds in finless porpoises (Neophocaena phocaenoides) from Korean coastal waters[J]. Marine Pollution Bulletin, 2011, 62(9):1963-1968 Castro-Jiménez J, Bǎnaru D, Chen C T, et al. Persistent organic pollutants burden, trophic magnification and risk in a pelagic food web from coastal NW Mediterranean Sea[J]. Environmental Science & Technology, 2021, 55(14):9557-9568 Mizukawa K, Takada H, Takeuchi I, et al. Bioconcentration and biomagnification of polybrominated diphenyl ethers (PBDEs) through lower-trophic-level coastal marine food web[J]. Marine Pollution Bulletin, 2009, 58(8):1217-1224 Conn K E, Liedtke T L, Takesue R K, et al. Legacy and current-use toxic contaminants in Pacific sand lance (Ammodytes personatus) from Puget Sound, Washington, USA[J]. Marine Pollution Bulletin, 2020, 158:111287 Borrell A, Tornero V, Bhattacharjee D, et al. Organochlorine concentrations in aquatic organisms from different trophic levels of the Sundarbans mangrove ecosystem and their implications for human consumption[J]. Environmental Pollution, 2019, 251:681-688 Sun Y X, Zhang Z W, Xu X R, et al. Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2015, 99(1-2):150-156 Megson D, Brown T, Jones G R, et al. Polychlorinated biphenyl (PCB) concentrations and profiles in marine mammals from the North Atlantic Ocean[J]. Chemosphere, 2022, 288(Pt 3):132639 Pinzone M, Budzinski H, Tasciotti A, et al. POPs in free-ranging pilot whales, sperm whales and fin whales from the Mediterranean Sea:Influence of biological and ecological factors[J]. Environmental Research, 2015, 142:185-196 Choo G, Lee I S, Oh J E. Species and habitat-dependent accumulation and biomagnification of brominated flame retardants and PBDE metabolites[J]. Journal of Hazardous Materials, 2019, 371:175-182 Barón E, Giménez J, Verborgh P, et al. Bioaccumulation and biomagnification of classical flame retardants, related halogenated natural compounds and alternative flame retardants in three delphinids from Southern European waters[J]. Environmental Pollution, 2015, 203:107-115 Li H J, Fu J J, Zhang A Q, et al. Occurrence, bioaccumulation and long-range transport of short-chain chlorinated paraffins on the Fildes Peninsula at King George Island, Antarctica[J]. Environment International, 2016, 94:408-414 Ma X D, Zhang H J, Wang Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environmental Science & Technology, 2014, 48(10):5964-5971 Huang Y M, Chen L G, Jiang G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. The Science of the Total Environment, 2019, 671:262-269 Zeng L X, Lam J C W, Chen H, et al. Tracking dietary sources of short- and medium-chain chlorinated paraffins in marine mammals through a subtropical marine food web[J]. Environmental Science & Technology, 2017, 51(17):9543-9552 de Wit C A, Bossi R, Dietz R, et al. Organohalogen compounds of emerging concern in Baltic Sea biota:Levels, biomagnification potential and comparisons with legacy contaminants[J]. Environment International, 2020, 144:106037 Facciola N, Pedro S, Houde M, et al. Measurable levels of short-chain chlorinated paraffins in western Hudson Bay fishes but limited biomagnification from fish to ringed seals[J]. Environmental Toxicology and Chemistry, 2021, 40(11):2990-2999 Zeng L X, Lam J C W, Wang Y W, et al. Temporal trends and pattern changes of short- and medium-chain chlorinated paraffins in marine mammals from the South China Sea over the past decade[J]. Environmental Science & Technology, 2015, 49(19):11348-11355 Yuan B, McLachlan M S, Roos A M, et al. Long-chain chlorinated paraffins have reached the Arctic[J]. Environmental Science & Technology Letters, 2021, 8(9):753-759 Ali A M, Langberg H A, Hale S E, et al. The fate of poly- and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic[J]. Environmental Science Processes & Impacts, 2021, 23(4):588-604 Cara B, Lies T, Thimo G, et al. Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea:Distribution and human health risk implications[J]. Environmental Pollution, 2022, 311:119907 Haukås M, Berger U, Hop H, et al. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web[J]. Environmental Pollution, 2007, 148(1):360-371 Munoz G, Budzinski H, Babut M, et al. Evidence for the trophic transfer of perfluoroalkylated substances in a temperate macrotidal estuary[J]. Environmental Science & Technology, 2017, 51(15):8450-8459 Boisvert G, Sonne C, Rigét F F, et al. Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey[J]. Environmental Pollution, 2019, 252(Pt B):1335-1343 Zhang B, He Y, Yang G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea:Temporal trends and tissue-specific accumulation[J]. Environmental Science & Technology, 2022, 56(10):6113-6122 Jurado E, Jaward F, Lohmann R, et al. Wet deposition of persistent organic pollutants to the global oceans[J]. Environmental Science & Technology, 2005, 39(8):2426-2435 Bustnes J O, Borgå K, Dempster T, et al. Latitudinal distribution of persistent organic pollutants in pelagic and demersal marine fish on the Norwegian Coast[J]. Environmental Science & Technology, 2012, 46(14):7836-7843 Vorkamp K, Balmer J, Hung H, et al. A review of chlorinated paraffin contamination in Arctic ecosystems[J]. Emerging Contaminants, 2019, 5:219-231 Teuten E L, Rowland S J, Galloway T S, et al. Potential for plastics to transport hydrophobic contaminants[J]. Environmental Science & Technology, 2007, 41(22):7759-7764 Koelmans A A. Modeling the Role of Microplastics in Bioaccumulation of Organic Chemicals to Marine Aquatic Organisms. A Critical Review[M]//Marine Anthropogenic Litter. Cham:Springer International Publishing, 2015:309-324 Koelmans A A, Bakir A, Burton G A, et al. Microplastic as a vector for chemicals in the aquatic environment:Critical review and model-supported reinterpretation of empirical studies[J]. Environmental Science & Technology, 2016, 50(7):3315-3326 Nfon E, Cousins I T, Broman D. Biomagnification of organic pollutants in benthic and pelagic marine food chains from the Baltic Sea[J]. The Science of the Total Environment, 2008, 397(1-3):190-204 Hop H, Borgá K, Gabrielsen G W, et al. Food web magnificaton of persistent organic pollutants in poikilotherms and homeotherms[J]. Environmental Science & Technology, 2002, 36(12):2589-2597 Borgå K, Gabrielsen G W, Skaare J U. Biomagnification of organochlorines along a Barents Sea food chain[J]. Environmental Pollution, 2001, 113(2):187-198 Northcott G L, Jones K C. Partitioning, extractability, and formation of nonextractable PAH residues in soil. 2. Effects on compound dissolution behavior[J]. Environmental Science & Technology, 2001, 35(6):1111-1117 Wan Y, Jin X H, Hu J Y, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, North China[J]. Environmental Science & Technology, 2007, 41(9):3109-3114 Takeuchi I, Miyoshi N, Mizukawa K, et al. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by delta 13C and delta 15N isotope ratios as guides to trophic web structure[J]. Marine Pollution Bulletin, 2009, 58(5):663-671 Akhbarizadeh R, Moore F, Keshavarzi B. Polycyclic aromatic hydrocarbons and potentially toxic elements in seafood from the Persian Gulf:Presence, trophic transfer, and chronic intake risk assessment[J]. Environmental Geochemistry and Health, 2019, 41(6):2803-2820 Malmquist L M, Selck H, Jørgensen K B, et al. Polycyclic aromatic acids are primary metabolites of alkyl-PAHs-A case study with Nereis diversicolor[J]. Environmental Science & Technology, 2015, 49(9):5713-5721 于海瀛. 部分有机化合物空气/颗粒物分配系数与正辛醇/空气分配系数的预测研究[D]. 大连:大连理工大学, 2008:75-78 Yu H Y. Prediction for gas-particle partition coefficient and octanol-air partition coefficient of selected organic compounds[D]. Dalian:Dalian University of Technology, 2008:75 -78(in Chinese)
Prince K D, Taylor S D, Angelini C. A global, cross-system meta-analysis of polychlorinated biphenyl biomagnification[J]. Environmental Science & Technology, 2020, 54(18):10989-11001 Walters D M, Mills M A, Cade B S, et al. Trophic magnification of PCBs and its relationship to the octanol-water partition coefficient[J]. Environmental Science & Technology, 2011, 45(9):3917-3924 Buckman A H, Wong C S, Chow E A, et al. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish[J]. Aquatic Toxicology, 2006, 78(2):176-185 Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants[J]. Science, 2007, 317(5835):236-239 Kucklick J, Schwacke L, Wells R, et al. Bottlenose dolphins as indicators of persistent organic pollutants in the western North Atlantic Ocean and northern Gulf of Mexico[J]. Environmental Science & Technology, 2011, 45(10):4270-4277 García-Álvarez N, Boada L D, Fernández A, et al. Assessment of the levels of polycyclic aromatic hydrocarbons and organochlorine contaminants in bottlenose dolphins (Tursiops truncatus) from the Eastern Atlantic Ocean[J]. Marine Environmental Research, 2014, 100:48-56 Boon J P, Oostingh I, van der Meer J, et al. A model for the bioaccumulation of chlorobiphenyl congeners in marine mammals[J]. European Journal of Pharmacology, 1994, 270(2-3):237-251 Boon J P, van der Meer J, Allchin C R, et al. Concentration-dependent changes of PCB patterns in fish-eating mammals:Structural evidence for induction of cytochrome P450[J]. Archives of Environmental Contamination and Toxicology, 1997, 33(3):298-311 Kannan N, Reusch T B, Schulz-Bull D E, et al. Chlorobiphenyls:Model compounds for metabolism in food chain organisms and their potential use as ecotoxicological stress indicators by application of the metabolic slope concept[J]. Environmental Science & Technology, 1995, 29(7):1851-1859 Hoekstra P F, Wong C S, O'Hara T M, et al. Enantiomer-specific accumulation of PCB atropisomers in the bowhead whale (Balaena mysticetus)[J]. Environmental Science & Technology, 2002, 36(7):1419-1425 Tanabe S, Watanabe S, Kan H, et al. Capacity and mode of PCB metabolism in small cetaceans1[J]. Marine Mammal Science, 1988, 4(2):103-124 Lavandier R, Arêas J, Quinete N, et al. PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast[J]. Environmental Pollution, 2016, 208(Pt B):442-449 Letcher R J, Morris A D, Dyck M, et al. Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada[J]. The Science of the Total Environment, 2018, 610-611:121-136 Dorneles P R, Lailson-Brito J, Dirtu A C, et al. Anthropogenic and naturally-produced organobrominated compounds in marine mammals from Brazil[J]. Environment International, 2010, 36(1):60-67 Shao M H, Tao P, Wang M, et al. Trophic magnification of polybrominated diphenyl ethers in the marine food web from coastal area of Bohai Bay, North China[J]. Environmental Pollution, 2016, 213:379-385 Thomann R V. Bioaccumulation model of organic chemical distribution in aquatic food chains[J]. Environmental Science & Technology, 1989, 23(6):699-707 Stapleton H M, Letcher R J, Baker J E. Debromination of polybrominated diphenyl ether congeners BDE 99 and BDE 183 in the intestinal tract of the common carp (Cyprinus carpio)[J]. Environmental Science & Technology, 2004, 38(4):1054-1061 Mizukawa K, Yamada T, Matsuo H, et al. Biomagnification and debromination of polybrominated diphenyl ethers in a coastal ecosystem in Tokyo Bay[J]. The Science of the Total Environment, 2013, 449:401-409 Zheng B H, Zhao X R, Ni X J, et al. Bioaccumulation characteristics of polybrominated diphenyl ethers in the marine food web of Bohai Bay[J]. Chemosphere, 2016, 150:424-430 van Mourik L M, Gaus C, Leonards P E G, et al. Chlorinated paraffins in the environment:A review on their production, fate, levels and trends between 2010 and 2015[J]. Chemosphere, 2016, 155:415-428 Scheringer M. Characterization of the environmental distribution behavior of organic chemicals by means of persistence and spatial range[J]. Environmental Science & Technology, 1997, 31(10):2891-2897 Li C, Xie H B, Chen J W, et al. Predicting gaseous reaction rates of short chain chlorinated paraffins with·OH:Overcoming the difficulty in experimental determination[J]. Environmental Science & Technology, 2014, 48(23):13808-13816 Huang H T, Gao L R, Xia D, et al. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China[J]. Scientific Reports, 2017, 7(1):10749 Ma X D, Zhang H J, Yao Z W, et al. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers (PBDEs) in a marine food web from Liaodong Bay, North China[J]. Marine Pollution Bulletin, 2013, 74(1):110-115 Wan Y, Hu J Y, Yang M, et al. Characterization of trophic transfer for polychlorinated dibenzo-p-dioxins, dibenzofurans, non- and mono-ortho polychlorinated biphenyls in the marine food web of Bohai Bay, North China[J]. Environmental Science & Technology, 2005, 39(8):2417-2425 Goecke-Flora C M, Reo N V. Influence of carbon chain length on the hepatic effects of perfluorinated fatty acids. A 19F- and 31P-NMR investigation[J]. Chemical Research in Toxicology, 1996, 9(4):689-695 Martin J W, Mabury S A, Solomon K R, et al. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2003, 22(1):196-204 Hoekman D. Exploring QSAR fundamentals and applications in chemistry and biology[J]. Journal of the American Chemical Society, 1996, 118(43):10678 Conder J M, Hoke R A, de Wolf W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds[J]. Environmental Science & Technology, 2008, 42(4):995-1003 Butt C M, Mabury S A, Kwan M, et al. Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida) from the Canadian Arctic[J]. Environmental Toxicology and Chemistry, 2008, 27(3):542-553 Kannan K. Perfluoroalkyl and polyfluoroalkyl substances:Current and future perspectives[J]. Environmental Chemistry, 2011, 8(4):333 Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arctic marine food web[J]. Environmental Science & Technology, 2004, 38(24):6475-6481 Galatius A, Bossi R, Sonne C, et al. PFAS profiles in three North Sea top predators:Metabolic differences among species?[J]. Environmental Science and Pollution Research International, 2013, 20(11):8013-8020 Miranda D A, Peaslee G F, Zachritz A M, et al. A worldwide evaluation of trophic magnification of per- and polyfluoroalkyl substances in aquatic ecosystems[J]. Integrated Environmental Assessment and Management, 2022, 18(6):1500-1512 Gebbink W A, Bossi R, Rigét F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144:2384-2391 Rayne S, Forest K. Perfluoroalkyl contaminants in an Arctic marine food web:Trophic magnification and wildlife exposure[J]. Environmental Science & Technology, 2009, 43(11):4037-4043 Liu Y W, Ruan T, Lin Y F, et al. Chlorinated polyfluoroalkyl ether sulfonic acids in marine organisms from Bohai Sea, China:Occurrence, temporal variations, and trophic transfer behavior[J]. Environmental Science & Technology, 2017, 51(8):4407-4414 Li Y N, Yao J Z, Zhang J, et al. First report on the bioaccumulation and trophic transfer of perfluoroalkyl ether carboxylic acids in estuarine food web[J]. Environmental Science & Technology, 2022, 56(10):6046-6055 -

计量
- 文章访问数: 3874
- HTML全文浏览数: 3874
- PDF下载数: 259
- 施引文献: 0