海绵动物对微塑料的生物累积和排出

王婷婷, 陈荣. 海绵动物对微塑料的生物累积和排出[J]. 生态毒理学报, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001
引用本文: 王婷婷, 陈荣. 海绵动物对微塑料的生物累积和排出[J]. 生态毒理学报, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001
Wang Tingting, Chen Rong. Bioaccumulation and Elimination of Microplastics by Sponges[J]. Asian journal of ecotoxicology, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001
Citation: Wang Tingting, Chen Rong. Bioaccumulation and Elimination of Microplastics by Sponges[J]. Asian journal of ecotoxicology, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001

海绵动物对微塑料的生物累积和排出

    作者简介: 王婷婷(1998-),女,硕士研究生,研究方向为生态毒理学,E-mail:3033277695@qq.com
    通讯作者: 陈荣, E-mail: chenrong@xmu.edu.cn
  • 中图分类号: X171.5

Bioaccumulation and Elimination of Microplastics by Sponges

    Corresponding author: Chen Rong, chenrong@xmu.edu.cn
  • 摘要: 海绵动物滤水能力极强,能高效清除水体中的颗粒物质,具有净化海洋环境中微塑料污染的潜力。本文首次开展了蜂海绵(Haliclona simulans)和沐浴海绵(Spongia officinalis)对微塑料的生物累积和排出实验。利用连续暴露实验装置,将蜂海绵和沐浴海绵分别置于不同粒径(<100 μm、100~300 μm)浓度为5 000 particles·L-1的微塑料悬浮液中暴露100 min,期间每20 min取水样进行微塑料计数,观察海绵对微塑料的生物累积;累积实验结束后,将海绵立即转移到清洁海水中进行排出实验,分别在2、4、8、12、24、48和72 h收集体系中全部的水样和海绵粪便,测定样品中微塑料含量。结果显示,(1)蜂海绵和沐浴海绵均对微塑料表现出较高的累积能力,1 h可清除体系60%以上微塑料。(2)排出实验结果显示,72 h后,蜂海绵体内累积的<100 μm和100~300 μm微塑料总排出比例分别达到(33.90±0.94)%和(28.54±0.40)%;沐浴海绵对2种粒径微塑料的总排出比例分别为(23.01±0.07)%和(18.19±2.97)%,显著低于蜂海绵(P<0.05),表现出更高的微塑料赋存能力。(3)蜂海绵和沐浴海绵通过水相排出的微塑料占比均略高于粪便相,但无显著差异(P>0.05)。蜂海绵和沐浴海绵都可以通过粪便排出相当比例的微塑料,这有可能增加微塑料通过底栖食物链在海洋生态系统中传递的风险。
  • 加载中
  • Wagner M, Scherer C, Alvarez-Muñoz D, et al. Microplastics in freshwater ecosystems:What we know and what we need to know[J]. Environmental Sciences Europe, 2014, 26(1):12-21
    Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 62(12):2588-2597
    Fendall L S, Sewell M A. Contributing to marine pollution by washing your face:Microplastics in facial cleansers[J]. Marine Pollution Bulletin, 2009, 58(8):1225-1228
    Schwabl P, K ppel S, K nigshofer P, et al. Detection of various microplastics in human stool:A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7):453-457
    Zhang L S, Liu J Y, Xie Y S, et al. Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China[J]. Journal of Cleaner Production, 2021, 291:125968
    Taha Z D, Md Amin R, Anuar S T, et al. Microplastics in seawater and zooplankton:A case study from Terengganu Estuary and offshore waters, Malaysia[J]. The Science of the Total Environment, 2021, 786:147466
    Thompson R C, Moore C J, vom Saal F S, et al. Plastics, the environment and human health:Current consensus and future trends[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):2153-2166
    Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178:189-195
    Tang G W, Liu M Y, Zhou Q, et al. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas:Implications for anthropogenic impacts[J]. The Science of the Total Environment, 2018, 634:811-820
    Sharma M D, Elanjickal A I, Mankar J S, et al. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials, 2020, 398:122994
    Lamb J B, Willis B L, Fiorenza E A, et al. Plastic waste associated with disease on coral reefs[J]. Science, 2018, 359(6374):460-462
    Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
    Dubaish F, Liebezeit G. Suspended microplastics and black carbon particles in the jade system, Southern North Sea[J]. Water, Air, & Soil Pollution, 2013, 224(2):1352-1360
    Li Y Z, Chen G L, Xu K H, et al. Microplastics environmental effect and risk assessment on the aquaculture systems from South China[J]. International Journal of Environmental Research and Public Health, 2021, 18(4):1869
    Ma J L, Niu X J, Zhang D Q, et al. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China[J]. The Science of the Total Environment, 2020, 744:140679
    Gündoǧdu S, Eroldoǧan O T, Evliyaoǧlu E, et al. Fish out, plastic in:Global pattern of plastics in commercial fishmeal[J]. Aquaculture, 2021, 534:736316
    Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 62(12):2588-2597
    Lusher A L, McHugh M, Thompson R C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel[J]. Marine Pollution Bulletin, 2013, 67(1-2):94-99
    Buwono N R, Risjani Y, Soegianto A. Contamination of microplastics in Brantas River, East Java, Indonesia and its distribution in gills and digestive tracts of fish Gambusia affinis[J]. Emerging Contaminants, 2021(1):172-178
    Pannetier P, Cachot J, Clérandeau C, et al. Toxicity Assessment of Pollutants Sorbed on Microplastics Using Various Bioassays on Two Fish Cell Lines[M]//Fate and Impact of Microplastics in Marine Ecosystems. Amsterdam:Elsevier, 2017:140-141
    Vendel A L, Bessa F, Alves V E N, et al. Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures[J]. Marine Pollution Bulletin, 2017, 117(1-2):448-455
    Bayne B L, Ahrens M, Allen S K, et al. The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: A dissenting view[J]. Journal of Shellfish Research, 2017, 36(3):545-547
    Shore E A, DeMayo J A, Pespeni M H. Microplastics reduce net population growth and fecal pellet sinking rates for the marine copepod, Acartia tonsa[J]. Environmental Pollution, 2021, 284:117379
    Cavalier-Smith T, Allsopp M P, Chao E E, et al. Sponge phylogeny, animal monophyly, and the origin of the nervous system:18S rRNA evidence[J]. Canadian Journal of Zoology, 1996, 74(11):2031-2045
    Bell J J, Smith D. Ecology of sponge assemblages (Porifera) in the Wakatobi Region, south-east Sulawesi, Indonesia:Richness and abundance[J]. Journal of the Marine Biological Association of the United Kingdom, 2004, 84(3):581-591
    Gargiulo J C. Inside multi-functional aquarium sponge filter:US5203990[P]. 1993-04-20
    Yahel G, Eerkes-Medrano D I, Leys S P. Size independent selective filtration of ultraplankton by hexactinellid glass sponges[J]. Aquatic Microbial Ecology, 2006, 45:181-194
    Girard E B, Fuchs A, Kaliwoda M, et al. Sponges as bioindicators for microparticulate pollutants?[J]. Environmental Pollution, 2021, 268(Pt A):115851
    de Mestre C, Maher W, Roberts D, et al. Sponges as sentinels:Patterns of spatial and intra-individual variation in trace metal concentration[J]. Marine Pollution Bulletin, 2012, 64(1):80-89
    Gantt S E, López-Legentil S, Erwin P M. Stable microbial communities in the sponge Crambe crambe from inside and outside a polluted Mediterranean Harbor[J]. FEMS Microbiology Letters, 2017, 364(11):fnx105
    Aresta A, Nonnis Marzano C, Lopane C, et al. Analytical investigations on the lindane bioremediation capability of the demosponge Hymeniacidon perlevis[J]. Marine Pollution Bulletin, 2015, 90(1-2):143-149
    Rao J V, Srikanth K, Pallela R, et al. The use of marine sponge, Haliclona tenuiramosa as bioindicator to monitor heavy metal pollution in the coasts of Gulf of Mannar, India[J]. Environmental Monitoring and Assessment, 2009, 156(1):451
    Wagner C, Steffen R, Koziol C, et al. Apoptosis in marine sponges:A biomarker for environmental stress (cadmium and bacteria)[J]. Marine Biology, 1998, 131(3):411-421
    Longo C, Corriero G, Licciano M, et al. Bacterial accumulation by the Demospongiae Hymeniacidon perlevis:A tool for the bioremediation of polluted seawater[J]. Marine Pollution Bulletin, 2010, 60(8):1182-1187
    Chaves-Fonnegra A, Maldonado M, Blackwelder P, et al. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix[J]. Journal of the Marine Biological Association of the United Kingdom, 2016, 96(2):515-528
    Larsen P S, Riisgård H U. Validation of the flow-through chamber (FTC) and steady-state (SS) methods for clearance rate measurements in bivalves[J]. Biology Open, 2012, 1(1):6-11
    Fallon B R, Freeman C J. Plastics in Porifera:The occurrence of potential microplastics in marine sponges and seawater from Bocas del Toro, Panamá[J]. PeerJ, 2021, 9:e11638
    Baird, Clifford Alan. Measuring the effects of microplastics on sponges[D]. Wellington:Te Kura Mātauranga Koiora, 2016:30-32
    Cerrano C, Calcinai B, Camillo C G D, et al. How and why do sponges incorporate foreign material? Strategies in Porifera[M]//Custódio M R, Gisele Lbo-Hajdu, Hajdu E, et al. Porifera Research:Biodiversity, Innovation and Sustainability. Rio de Janeiro:Museu Nacional, 2007:239-246
    Leys S P, Eerkes-Medrano D I. Feeding in a calcareous sponge:Particle uptake by pseudopodia[J]. The Biological Bulletin, 2006, 211(2):157-171
    Coppock R L, Galloway T S, Cole M, et al. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus[J]. The Science of the Total Environment, 2019, 687:780-789
    Wiens M, Koziol C, Hassanein H, et al. Induction of gene expression of the chaperones 14-3-3 and HSP70 by PCB 118(2,3',4,4',5-pentachlorobiphenyl) in the marine sponge Geodia cydonium:Novel biomarkers for polychlorinated biphenyls[J]. Marine Ecology Progress Series, 1998, 165:247-257
    Cerrano C, Calcinai B, Cucchiari E, et al. The diversity of relationships between Antarctic sponges and diatoms:The case of Mycale acerata Kirkpatrick, 1907(Porifera, Demospongiae)[J]. Polar Biology, 2004, 27(4):231-237
  • 加载中
计量
  • 文章访问数:  2392
  • HTML全文浏览数:  2392
  • PDF下载数:  146
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-14
王婷婷, 陈荣. 海绵动物对微塑料的生物累积和排出[J]. 生态毒理学报, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001
引用本文: 王婷婷, 陈荣. 海绵动物对微塑料的生物累积和排出[J]. 生态毒理学报, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001
Wang Tingting, Chen Rong. Bioaccumulation and Elimination of Microplastics by Sponges[J]. Asian journal of ecotoxicology, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001
Citation: Wang Tingting, Chen Rong. Bioaccumulation and Elimination of Microplastics by Sponges[J]. Asian journal of ecotoxicology, 2022, 17(6): 29-36. doi: 10.7524/AJE.1673-5897.20221014001

海绵动物对微塑料的生物累积和排出

    通讯作者: 陈荣, E-mail: chenrong@xmu.edu.cn
    作者简介: 王婷婷(1998-),女,硕士研究生,研究方向为生态毒理学,E-mail:3033277695@qq.com
  • 厦门大学环境与生态学院,厦门市海湾生态保护与修复重点实验室,厦门 361102

摘要: 海绵动物滤水能力极强,能高效清除水体中的颗粒物质,具有净化海洋环境中微塑料污染的潜力。本文首次开展了蜂海绵(Haliclona simulans)和沐浴海绵(Spongia officinalis)对微塑料的生物累积和排出实验。利用连续暴露实验装置,将蜂海绵和沐浴海绵分别置于不同粒径(<100 μm、100~300 μm)浓度为5 000 particles·L-1的微塑料悬浮液中暴露100 min,期间每20 min取水样进行微塑料计数,观察海绵对微塑料的生物累积;累积实验结束后,将海绵立即转移到清洁海水中进行排出实验,分别在2、4、8、12、24、48和72 h收集体系中全部的水样和海绵粪便,测定样品中微塑料含量。结果显示,(1)蜂海绵和沐浴海绵均对微塑料表现出较高的累积能力,1 h可清除体系60%以上微塑料。(2)排出实验结果显示,72 h后,蜂海绵体内累积的<100 μm和100~300 μm微塑料总排出比例分别达到(33.90±0.94)%和(28.54±0.40)%;沐浴海绵对2种粒径微塑料的总排出比例分别为(23.01±0.07)%和(18.19±2.97)%,显著低于蜂海绵(P<0.05),表现出更高的微塑料赋存能力。(3)蜂海绵和沐浴海绵通过水相排出的微塑料占比均略高于粪便相,但无显著差异(P>0.05)。蜂海绵和沐浴海绵都可以通过粪便排出相当比例的微塑料,这有可能增加微塑料通过底栖食物链在海洋生态系统中传递的风险。

English Abstract

参考文献 (43)

返回顶部

目录

/

返回文章
返回