环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展
Research Progress on Effect of Elevated CO2 on Growth and Toxicity of Marine Toxic Microalgae
-
摘要: 近年来,由人类活动引起的近海环境污染不断加剧,这使得有害藻华(harmful algal blooms, HABs)暴发的范围及危害不断扩大,其中有毒微藻藻华也因其毒性效应而逐渐受到关注。18世纪后期以来,全球气候变化加剧了有毒藻华的发生和发展,其中有毒藻华暴发的潜力和危害性也可能增加,环境二氧化碳(CO2)就是其中一个影响因素。到2019年为止,环境CO2浓度已达到工业化(1750年)前的148%,对有毒藻华的发生、发展产生了重要影响。CO2浓度的升高能够缓解微藻的碳限制,促进产毒藻类的固碳和生长;同时,CO2溶于海水使得海水pH降低,也有可能对某些有毒藻华微藻的生长产生影响。CO2浓度升高还会影响有毒微藻藻毒素的合成,提高产毒效率或促使毒素由低毒性组分转化为高毒性。本文综述了环境CO2浓度升高对有毒藻华微藻生长和产毒等的研究进展,探讨了CO2升高背景下有毒藻华暴发的潜力及危害性,以期为深入研究全球变化对有毒藻华的影响提供参考,并为有毒藻华监测预警方案的优化提供理论支撑。Abstract: In recent years, the pollution of coastal environment has been aggravated by human activities. As a result, the coverage and influence of harmful algae blooms (HABs) have been expanded. Among them, toxic algal blooms have drawn much attention due to its toxin productions. Since the industrial revolution after 18th Centry, the climate changes resulted from elevated environmental carbon dioxide (CO2) have intensified the occurrence of HABs and could increase their toxicity. It was reported that the environmental CO2 level in 2019 has reached 148% of that before industrialization (1750), which may influence the potent and harm of toxic algal blooms. The elevated CO2 can alleviate the carbon limitation and promote carbon fixation and growth of toxic microalgae. However, lower pH may inhibit the growth of some species. The increasing of CO2 concentration can also affect the toxin production and increase the cytotoxicity of some species, which increases the toxin synthesis or changes the toxin composition with higher toxic components. This paper reviews the effects of elevated CO2 on the growth and toxicity of marine toxic microalgae, discussed the potential changes of toxic algal blooms under elevated CO2 and provided optimization suggestions to strengthen toxic algal bloom monitoring with climate changes. This study suggests that it is necessary to consider the changes of environmental CO2 during coastal water monitoring. And adjusting the monitoring index of toxic algae density timely may provide a more accurate way to predict the toxicity of HABs.
-
Key words:
- CO2 /
- climate change /
- harmful algal blooms /
- algal toxin
-
-
Berdalet E, Kudela R, Urban E, et al. GlobalHAB: A new program to promote international research, observations, and modeling of harmful algal blooms in aquatic systems[J]. Oceanography, 2017, 30(1): 70-81 赵冬至, 赵玲, 张丰收. 我国海域赤潮灾害的类型、分布与变化趋势[J]. 海洋环境科学, 2003, 22(3): 7-11 Zhao D Z, Zhao L, Zhang F S. Type of formation, distribution and temporal trend of red tides occurred in the China Sea[J]. Marine Environmental Science, 2003, 22(3): 7-11(in Chinese)
于仁成, 吕颂辉, 齐雨藻, 等. 中国近海有害藻华研究现状与展望[J]. 海洋与湖沼, 2020, 51(4): 768-788 Yu R C, Lv S H, Qi Y Z, et al. Progress and perspectives of harmful algal bloom studies in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 768-788(in Chinese)
Smayda T. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea[J]. Limnology and Oceanography, 1997, 42(5): 1137-1153 Visciano P, Schirone M, Berti M, et al. Marine biotoxins: Occurrence, toxicity, regulatory limits and reference methods[J]. Frontiers in Microbiology, 2016, 7: 1051 Lu D, Qi Y, Gu H, et al. Causative species of harmful algal blooms in Chinese coastal waters[J]. Algological Studies International Journal of Phycological Research, 2014, 145: 145-168 Gao Y, Yu R C, Chen J H, et al. Distribution of Alexandrium fundyense and A. pacificum (Dinophyceae) in the Yellow Sea and Bohai Sea[J]. Marine Pollution Bulletin, 2015, 96(1-2): 210-219 国家海洋局. 中国海洋灾害公报[R]. 北京: 国家海洋局, 2020 Genovesi B, Berrebi P, Nagai S, et al. Geographic structure evidenced in the toxic dinoflagellate Alexandrium pacificum Litaker (A. catenella - group Ⅳ (Whedon & Kofoid) Balech) along Japanese and Chinese coastal waters[J]. Marine Pollution Bulletin, 2015, 98(1-2): 95-105 Gao Y, Yu R C, Murray S A, et al. High specificity of a quantitative PCR assay targeting a saxitoxin gene for monitoring toxic algae associated with paralytic shellfish toxins in the Yellow Sea[J]. Applied and Environmental Microbiology, 2015, 81(20): 6973-6981 Gu H F, Liu T T, Vale P, et al. Morphology, phylogeny and toxin profiles of Gymnodinium inusitatum sp. nov., Gymnodinium catenatum and Gymnodinium microreticulatum (Dinophyceae) from the Yellow Sea, China[J]. Harmful Algae, 2013, 28: 97-107 Usup G, Ahmad A, Matsuoka K, et al. Biology, ecology and bloom dynamics of the toxic marine dinoflagellate Pyrodinium bahamense[J]. Harmful Algae, 2012, 14: 301-312 罗璇, 于仁成, 周名江. 应用LC-MS联用方法分析青岛近海渐尖鳍藻(Dinophysis acuminata)细胞中的毒素成分[J]. 海洋环境科学, 2014, 33(5): 781-787 Luo X, Yu R C, Zhou M J. Analysis of toxins in cells of Dinophysis acuminata collected from the coastal waters of Qingdao with a LC-MS method[J]. Marine Environmental Science, 2014, 33(5): 781-787(in Chinese)
Luo Z H, Zhang H, Krock B, et al. Morphology, molecular phylogeny and okadaic acid production of epibenthic Prorocentrum (Dinophyceae) species from the northern South China Sea[J]. Algal Research, 2017, 22: 14-30 勾玉晓, 刘磊, 李冬梅, 等. 北黄海慢原甲藻形态结构与腹泻性贝类毒素组成[J]. 中国渔业质量与标准, 2018, 8(3): 11-18 Gou Y X, Liu L, Li D M, et al. Morphological and toxicological characterization of DSP producing dinoflagellate,Prorocentrum rhathymum, isolated from the North Yellow Sea, China[J]. Chinese Fishery Quality and Standards, 2018, 8(3): 11-18(in Chinese)
Li Y, Huang C X, Xu G S, et al. Pseudo-nitzschia simulans sp. nov. (Bacillariophyceae), the first domoic acid producer from Chinese waters[J]. Harmful Algae, 2017, 67: 119-130 Gu H F, Luo Z H, Krock B, et al. Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea[J]. Harmful Algae, 2013, 21-22: 64-75 Liu L, Wei N, Gou Y X, et al. Seasonal variability of Protoceratium reticulatum and yessotoxins in Japanese scallop Patinopecten yessoensis in northern Yellow Sea of China[J]. Toxicon, 2017, 139: 31-40 Salgado P, Riobó P, Rodríguez F, et al. Differences in the toxin profiles of Alexandrium ostenfeldii (Dinophyceae) strains isolated from different geographic origins: Evidence of paralytic toxin, spirolide, and gymnodimine[J]. Toxicon: Official Journal of the International Society on Toxinology, 2015, 103: 85-98 Selwood A I, Wilkins A L, Munday R, et al. Pinnatoxin H: A new pinnatoxin analogue from a South China Sea Vulcanodinium rugosum isolate[J]. Tetrahedron Letters, 2014, 55(40): 5508-5510 于仁成, 罗璇. 我国近海有毒藻和藻毒素的研究现状与展望[J]. 海洋科学集刊, 2016(1): 155-166 Toyofuku H. Joint FAO/WHO/IOC activities to provide scientific advice on marine biotoxins (research report)[J]. Marine Pollution Bulletin, 2006, 52(12): 1735-1745 陈军辉, 吴丹妮, 何秀平, 等. 海洋水环境中藻毒素的检测技术及分布研究进展[J]. 海洋科学进展, 2019, 37(3): 355-373 Chen J H, Wu D N, He X P, et al. The research advances in detection technology and distribution characteristics of algae toxins in marine water environment[J]. Advances in Marine Science, 2019, 37(3): 355-373(in Chinese)
柳俊秀, 何培民. 赤潮藻毒素种类与化学结构研究进展[J]. 中国医药生物技术, 2009, 4(2): 144-147 吕金金, 李宏业, 刘洁生, 等. 氮杂螺环酸贝类毒素的研究进展[J]. 海洋科学, 2018, 42(9): 127-134 Lü J J, Li H Y, Liu J S, et al. Advances in research on azaspiracids[J]. Marine Sciences, 2018, 42(9): 127-134(in Chinese)
吴海燕, 郭萌萌, 谭志军, 等. 环亚胺毒素研究进展[J]. 中国渔业质量与标准, 2012, 2(3): 21-32 Wu H Y, Guo M M, Tan Z J, et al. Research progress of cyclic imines toxins[J]. Chinese Fishery Quality and Standards, 2012, 2(3): 21-32(in Chinese)
高春蕾, 刘仁沿, 梁玉波, 等. 虾夷扇贝毒素yessotoxins(YTXs), 中国沿海贝类中首次发现的一组贝类生物毒素[J]. 海洋学报, 2010, 32(3): 129-137 Gao C L, Liu R Y, Liang Y B, et al. First report of the presence of yessotoxins (YTXs) in shellfish from China's coastal areas[J]. Acta Oceanologica Sinica, 2010, 32(3): 129-137(in Chinese)
高春蕾, 孙萍, 贾智慧, 等. 温度和营养盐限制对网状原角藻生长与产毒的影响[J]. 生态学报, 2017, 37(12): 4217-4226 Gao C L, Sun P, Jia Z H, et al. Effects of temperature and nutrient limitation on growth and yessotoxin production of Protoceratium reticulatum[J]. Acta Ecologica Sinica, 2017, 37(12): 4217-4226(in Chinese)
Fu F X, Warner M, Zhang Y H, et al. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria)[J]. Journal of Phycology, 2007, 43(3): 485-496 Howard M D A, Cochlan W P, Ladizinsky N, et al. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments[J]. Harmful Algae, 2007, 6(2): 206-217 Stocker T F, Qin D, Plattner G K, et al. IPCC, 2013: Climate Change 2013: the Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013: 525-527 Sabine C L, Feely R A. The Oceanic Sink for Carbon Dioxide[M]// Smith K A. Greenhouse Gas Sinks. Oxford: Oxford University Press, 2007: 31-49 Sala-Pérez M, Alpermann T J, Krock B, et al. Growth and bioactive secondary metabolites of Arctic Protoceratium reticulatum (Dinophyceae)[J]. Harmful Algae, 2016, 55: 85-96 Caldeira K, Wickett M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365 Doney S C, Fabry V J, Feely R A, et al. Ocean acidification[J]. Annual Review of Marine Science, 2009, 1(1): 169-192 Shi H, Jin F F, Wills R C J, et al. Global decline in ocean memory over the 21st Century[J]. Science Advances, 2022, 8(18): eabm3468 Riebesell U, Wolf-Gladrow D A, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates[J]. Nature, 1993, 361(6409): 249-251 Giovagnetti V, Brunet C, Conversano F, et al. Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: A mesocosm experiment in the Mediterranean Sea[J]. Biogeosciences, 2012, 10: 2973-2991 Jiang L Q, Feely R, Brendan R, et al. Climatological distribution of aragonite saturation state in the global oceans[J]. Global Biogeochemical Cycles, 2015, 29(10): 1656-1673 Aluwihare L, Meador T. Chemical Composition of Marine Dissolved Organic Nitrogen[M]. Capone D G, Bronk D, Mulholland M R, et al. Eds. Nitrogen in the Marine Environment. 2nd Edition. Elsevier Inc., 2008: 95-140 Rost B, Zondervan I, Wolf-Gladrow D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions[J]. Marine Ecology Progress Series, 2008, 373: 227-237 Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240 Torstensson A, Chierici M, Wulff A. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula[J]. Polar Biology, 2012, 35(2): 205-214 Eberlein T, Van de Waal D B, Rost B. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species[J]. Physiologia Plantarum, 2014, 151(4): 468-479 Lian Z R, Li F, He X P, et al. Rising CO2 will increase toxicity of marine dinoflagellate Alexandrium minutum[J]. Journal of Hazardous Materials, 2022, 431: 128627 Clement R, Lignon S, Mansuelle P, et al. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: A proteomic approach[J]. Scientific Reports, 2017, 7: 42333 贺云凤, 逄凯, 李克强, 等. NH4-N氮源下海洋酸化对东海原甲藻和米氏凯伦藻生长的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(5): 94-103 He Y F, Pang K, Li K Q, et al. Effects of ocean acidification on the growth of Prorocentrum donghaiense and Karenia mikimotoi under NH4-N source[J]. Periodical of Ocean University of China, 2020, 50(5): 94-103(in Chinese) Spilling K, Paul A J, Virkkala N, et al. Ocean acidification decreases plankton respiration: Evidence from a mesocosm experiment[J]. Biogeosciences, 2016, 13(16): 1-35 Mercado J M, Figueroa F L, Niell F X, et al. A new method for estimating external, carbonic anhydrase activity in macroalgae[J]. Journal of Phycology, 1997, 33(6): 999-1006 杨安强. 多重环境因子变化对赤潮异弯藻生长的影响[D]. 上海: 华东师范大学, 2021: 78-79 Yang A Q. Effect of multiple environment factors on the growth of Heterosigma akashiwo[D]. Shanghai: East China Normal University, 2021: 78 -79(in Chinese)
贾民娟. 不同CO2浓度对微藻生长的影响[D]. 济南: 山东大学, 2019: 24-25, 36-37 郝爽. 海洋酸化对微小亚历山大藻产毒的影响和调控机制初探[D]. 济南: 山东大学, 2021: 41, 53-55 徐金涛, 庞敏, 马新, 等. CO2加富对塔玛亚历山大藻叶绿素荧光参数及产毒的影响[J]. 海洋与湖沼, 2016, 47(3): 557-563 Xu J T, Pang M, Ma X, et al. Carbon dioxide enrichment affects chlorophyll fluorescence and toxin production of Alexandrium tamarense[J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 557-563(in Chinese)
胡顺鑫, 杨丁, 唐学玺, 等. 海水酸化对米氏凯伦藻和盐生杜氏藻种群增长和种间竞争的影响[J]. 海洋与湖沼, 2017, 48(4): 777-785 Hu S X, Yang D, Tang X X, et al. Ocean acidification on population growth and inter-species competition between Karenia mikimotoi and Dunaliella salina[J]. Oceanologia et Limnologia Sinica, 2017, 48(4): 777-785(in Chinese)
Tatters A O, Fu F X, Hutchins D A. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta[J]. PLoS One, 2012, 7(2): e32116 Clement R, Lignon S, Mansuelle P, et al. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: A proteomic approach[J]. Scientific Reports, 2017, 7: 1-12 Brandenburg K M, Velthuis M, Van de Waal D B. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels[J]. Global Change Biology, 2019, 25(8): 2607-2618 Pang M, Xu J T, Qu P, et al. Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins[J]. Harmful Algae, 2017, 68: 240-247 Sun J, Hutchins D, Feng Y Y, et al. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries[J]. Limnology and Oceanography, 2011, 56(3): 829-840 Jin P, Wang T F, Liu N N, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels[J]. Nature Communications, 2015, 6: 8714 Hardison D, Sunda W, Tester P, et al. Increased cellular brevetoxins in the red tide dinoflagellate Karenia brevis under CO2 limitation of growth rate: Evolutionary implications and potential effects on bloom toxicity[J]. Limnology and Oceanography, 2014, 59(2): 560-577 Hattenrath-Lehmann Theresa K, Smith Juliette L, Wallace Ryan B, et al. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense[J]. Limnology and Oceanography, 2015, 60(1): 198-214 Schmidt L, Hansen P J. Allelopathy in the prymnesiophyte Chrysochromulina polylepis: Effect of cell concentration, growth phase and pH[J]. Marine Ecology Progress Series, 2001, 216: 67-81 van de Waal D B, Eberlein T, John U, et al. Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense[J]. Toxicon: Official Journal of the International Society on Toxinology, 2014, 78: 58-67 Fu F X, Place A R, Garcia N S, et al. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum[J]. Aquatic Microbial Ecology, 2010, 59: 55-65 Kremp A, Godhe A, Egardt J, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions[J]. Ecology and Evolution, 2012, 2(6): 1195-1207 司冉冉, 关万春, 蔡景波, 等. 氮源对塔玛亚历山大藻生长和毒性的影响[J]. 生态学杂志, 2017, 36(10): 2880-2885 杨晶晶. 富营养化和海洋酸化对典型浮游植物群落生理生态特征的影响[D]. 杭州: 浙江大学, 2017: 56-61 Lundholm N, Hansen P J, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the Genera Pseudo-nitzschia and Nitzschia [J]. Marine Ecology Progress Series, 2004, 273: 1-15 Trimborn S, Lundholm N, Thoms S, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: The effect of pH-induced changes in seawater carbonate chemistry[J]. Physiologia Plantarum, 2008, 133(1): 92-105 郝爽, 刘丽君, 陈军辉, 等. 高氮磷比与酸化共同作用对微小亚历山大藻生长和产毒的影响[J]. 海洋科学, 2021, 45(2): 1-10 Hao S, Liu L J, Chen J H, et al. Effects of acidification and high N/P ratios on toxin production in Alexandrium minutum[J]. Marine Sciences, 2021, 45(2): 1-10(in Chinese)
Eberlein T, Waal D V D, Brandenburg K, et al. Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species[J]. Marine Ecology Progress Series, 2016, 543: 127-140 高欣, 许敏, 薛学洋, 等. CO2浓度升高和温度升高对铜绿微囊藻生长及产毒影响[J]. 环境科学与技术, 2014, 37(9): 1-4 Gao X, Xu M, Xue X Y, et al. Effects of elevated CO2 and temperature on growth and microcystin production of Microcystis aeruginosa[J]. Environmental Science & Technology, 2014, 37(9): 1-4(in Chinese)
Wohlrab S, John U, Klemm K, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton[J]. Harmful Algae, 2020, 92: 101697 -

计量
- 文章访问数: 2180
- HTML全文浏览数: 2180
- PDF下载数: 62
- 施引文献: 0