环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展

宫于琛, 屈佩, 刘瑞娟, 陈洪举, 庞敏. 环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展[J]. 生态毒理学报, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002
引用本文: 宫于琛, 屈佩, 刘瑞娟, 陈洪举, 庞敏. 环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展[J]. 生态毒理学报, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002
Gong Yuchen, Qu Pei, Liu Ruijuan, Chen Hongju, Pang Min. Research Progress on Effect of Elevated CO2 on Growth and Toxicity of Marine Toxic Microalgae[J]. Asian journal of ecotoxicology, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002
Citation: Gong Yuchen, Qu Pei, Liu Ruijuan, Chen Hongju, Pang Min. Research Progress on Effect of Elevated CO2 on Growth and Toxicity of Marine Toxic Microalgae[J]. Asian journal of ecotoxicology, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002

环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展

    作者简介: 宫于琛(1999—),女,硕士研究生,研究方向为海洋环境科学,E-mail: gongyuchen@stu.ouc.edu.cn
    通讯作者: 庞敏, E-mail: pangmin@fio.org.cn
  • 基金项目:

    山东省自然科学基金资助项目(ZR2021MD014);国家自然科学基金青年基金项目(41606140);中国科学院海洋生态与环境科学重点实验室(中国科学院海洋研究所)开放基金项目(KLMEES201803)

  • 中图分类号: X171.5

Research Progress on Effect of Elevated CO2 on Growth and Toxicity of Marine Toxic Microalgae

    Corresponding author: Pang Min, pangmin@fio.org.cn
  • Fund Project:
  • 摘要: 近年来,由人类活动引起的近海环境污染不断加剧,这使得有害藻华(harmful algal blooms, HABs)暴发的范围及危害不断扩大,其中有毒微藻藻华也因其毒性效应而逐渐受到关注。18世纪后期以来,全球气候变化加剧了有毒藻华的发生和发展,其中有毒藻华暴发的潜力和危害性也可能增加,环境二氧化碳(CO2)就是其中一个影响因素。到2019年为止,环境CO2浓度已达到工业化(1750年)前的148%,对有毒藻华的发生、发展产生了重要影响。CO2浓度的升高能够缓解微藻的碳限制,促进产毒藻类的固碳和生长;同时,CO2溶于海水使得海水pH降低,也有可能对某些有毒藻华微藻的生长产生影响。CO2浓度升高还会影响有毒微藻藻毒素的合成,提高产毒效率或促使毒素由低毒性组分转化为高毒性。本文综述了环境CO2浓度升高对有毒藻华微藻生长和产毒等的研究进展,探讨了CO2升高背景下有毒藻华暴发的潜力及危害性,以期为深入研究全球变化对有毒藻华的影响提供参考,并为有毒藻华监测预警方案的优化提供理论支撑。
  • 加载中
  • Berdalet E, Kudela R, Urban E, et al. GlobalHAB: A new program to promote international research, observations, and modeling of harmful algal blooms in aquatic systems[J]. Oceanography, 2017, 30(1): 70-81
    赵冬至, 赵玲, 张丰收. 我国海域赤潮灾害的类型、分布与变化趋势[J]. 海洋环境科学, 2003, 22(3): 7-11

    Zhao D Z, Zhao L, Zhang F S. Type of formation, distribution and temporal trend of red tides occurred in the China Sea[J]. Marine Environmental Science, 2003, 22(3): 7-11(in Chinese)

    于仁成, 吕颂辉, 齐雨藻, 等. 中国近海有害藻华研究现状与展望[J]. 海洋与湖沼, 2020, 51(4): 768-788

    Yu R C, Lv S H, Qi Y Z, et al. Progress and perspectives of harmful algal bloom studies in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 768-788(in Chinese)

    Smayda T. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea[J]. Limnology and Oceanography, 1997, 42(5): 1137-1153
    Visciano P, Schirone M, Berti M, et al. Marine biotoxins: Occurrence, toxicity, regulatory limits and reference methods[J]. Frontiers in Microbiology, 2016, 7: 1051
    Lu D, Qi Y, Gu H, et al. Causative species of harmful algal blooms in Chinese coastal waters[J]. Algological Studies International Journal of Phycological Research, 2014, 145: 145-168
    Gao Y, Yu R C, Chen J H, et al. Distribution of Alexandrium fundyense and A. pacificum (Dinophyceae) in the Yellow Sea and Bohai Sea[J]. Marine Pollution Bulletin, 2015, 96(1-2): 210-219
    国家海洋局. 中国海洋灾害公报[R]. 北京: 国家海洋局, 2020
    Genovesi B, Berrebi P, Nagai S, et al. Geographic structure evidenced in the toxic dinoflagellate Alexandrium pacificum Litaker (A. catenella - group Ⅳ (Whedon & Kofoid) Balech) along Japanese and Chinese coastal waters[J]. Marine Pollution Bulletin, 2015, 98(1-2): 95-105
    Gao Y, Yu R C, Murray S A, et al. High specificity of a quantitative PCR assay targeting a saxitoxin gene for monitoring toxic algae associated with paralytic shellfish toxins in the Yellow Sea[J]. Applied and Environmental Microbiology, 2015, 81(20): 6973-6981
    Gu H F, Liu T T, Vale P, et al. Morphology, phylogeny and toxin profiles of Gymnodinium inusitatum sp. nov., Gymnodinium catenatum and Gymnodinium microreticulatum (Dinophyceae) from the Yellow Sea, China[J]. Harmful Algae, 2013, 28: 97-107
    Usup G, Ahmad A, Matsuoka K, et al. Biology, ecology and bloom dynamics of the toxic marine dinoflagellate Pyrodinium bahamense[J]. Harmful Algae, 2012, 14: 301-312
    罗璇, 于仁成, 周名江. 应用LC-MS联用方法分析青岛近海渐尖鳍藻(Dinophysis acuminata)细胞中的毒素成分[J]. 海洋环境科学, 2014, 33(5): 781-787

    Luo X, Yu R C, Zhou M J. Analysis of toxins in cells of Dinophysis acuminata collected from the coastal waters of Qingdao with a LC-MS method[J]. Marine Environmental Science, 2014, 33(5): 781-787(in Chinese)

    Luo Z H, Zhang H, Krock B, et al. Morphology, molecular phylogeny and okadaic acid production of epibenthic Prorocentrum (Dinophyceae) species from the northern South China Sea[J]. Algal Research, 2017, 22: 14-30
    勾玉晓, 刘磊, 李冬梅, 等. 北黄海慢原甲藻形态结构与腹泻性贝类毒素组成[J]. 中国渔业质量与标准, 2018, 8(3): 11-18

    Gou Y X, Liu L, Li D M, et al. Morphological and toxicological characterization of DSP producing dinoflagellate,Prorocentrum rhathymum, isolated from the North Yellow Sea, China[J]. Chinese Fishery Quality and Standards, 2018, 8(3): 11-18(in Chinese)

    Li Y, Huang C X, Xu G S, et al. Pseudo-nitzschia simulans sp. nov. (Bacillariophyceae), the first domoic acid producer from Chinese waters[J]. Harmful Algae, 2017, 67: 119-130
    Gu H F, Luo Z H, Krock B, et al. Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea[J]. Harmful Algae, 2013, 21-22: 64-75
    Liu L, Wei N, Gou Y X, et al. Seasonal variability of Protoceratium reticulatum and yessotoxins in Japanese scallop Patinopecten yessoensis in northern Yellow Sea of China[J]. Toxicon, 2017, 139: 31-40
    Salgado P, Riobó P, Rodríguez F, et al. Differences in the toxin profiles of Alexandrium ostenfeldii (Dinophyceae) strains isolated from different geographic origins: Evidence of paralytic toxin, spirolide, and gymnodimine[J]. Toxicon: Official Journal of the International Society on Toxinology, 2015, 103: 85-98
    Selwood A I, Wilkins A L, Munday R, et al. Pinnatoxin H: A new pinnatoxin analogue from a South China Sea Vulcanodinium rugosum isolate[J]. Tetrahedron Letters, 2014, 55(40): 5508-5510
    于仁成, 罗璇. 我国近海有毒藻和藻毒素的研究现状与展望[J]. 海洋科学集刊, 2016(1): 155-166
    Toyofuku H. Joint FAO/WHO/IOC activities to provide scientific advice on marine biotoxins (research report)[J]. Marine Pollution Bulletin, 2006, 52(12): 1735-1745
    陈军辉, 吴丹妮, 何秀平, 等. 海洋水环境中藻毒素的检测技术及分布研究进展[J]. 海洋科学进展, 2019, 37(3): 355-373

    Chen J H, Wu D N, He X P, et al. The research advances in detection technology and distribution characteristics of algae toxins in marine water environment[J]. Advances in Marine Science, 2019, 37(3): 355-373(in Chinese)

    柳俊秀, 何培民. 赤潮藻毒素种类与化学结构研究进展[J]. 中国医药生物技术, 2009, 4(2): 144-147
    吕金金, 李宏业, 刘洁生, 等. 氮杂螺环酸贝类毒素的研究进展[J]. 海洋科学, 2018, 42(9): 127-134

    Lü J J, Li H Y, Liu J S, et al. Advances in research on azaspiracids[J]. Marine Sciences, 2018, 42(9): 127-134(in Chinese)

    吴海燕, 郭萌萌, 谭志军, 等. 环亚胺毒素研究进展[J]. 中国渔业质量与标准, 2012, 2(3): 21-32

    Wu H Y, Guo M M, Tan Z J, et al. Research progress of cyclic imines toxins[J]. Chinese Fishery Quality and Standards, 2012, 2(3): 21-32(in Chinese)

    高春蕾, 刘仁沿, 梁玉波, 等. 虾夷扇贝毒素yessotoxins(YTXs), 中国沿海贝类中首次发现的一组贝类生物毒素[J]. 海洋学报, 2010, 32(3): 129-137

    Gao C L, Liu R Y, Liang Y B, et al. First report of the presence of yessotoxins (YTXs) in shellfish from China's coastal areas[J]. Acta Oceanologica Sinica, 2010, 32(3): 129-137(in Chinese)

    高春蕾, 孙萍, 贾智慧, 等. 温度和营养盐限制对网状原角藻生长与产毒的影响[J]. 生态学报, 2017, 37(12): 4217-4226

    Gao C L, Sun P, Jia Z H, et al. Effects of temperature and nutrient limitation on growth and yessotoxin production of Protoceratium reticulatum[J]. Acta Ecologica Sinica, 2017, 37(12): 4217-4226(in Chinese)

    Fu F X, Warner M, Zhang Y H, et al. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria)[J]. Journal of Phycology, 2007, 43(3): 485-496
    Howard M D A, Cochlan W P, Ladizinsky N, et al. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments[J]. Harmful Algae, 2007, 6(2): 206-217
    Stocker T F, Qin D, Plattner G K, et al. IPCC, 2013: Climate Change 2013: the Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013: 525-527
    Sabine C L, Feely R A. The Oceanic Sink for Carbon Dioxide[M]// Smith K A. Greenhouse Gas Sinks. Oxford: Oxford University Press, 2007: 31-49
    Sala-Pérez M, Alpermann T J, Krock B, et al. Growth and bioactive secondary metabolites of Arctic Protoceratium reticulatum (Dinophyceae)[J]. Harmful Algae, 2016, 55: 85-96
    Caldeira K, Wickett M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365
    Doney S C, Fabry V J, Feely R A, et al. Ocean acidification[J]. Annual Review of Marine Science, 2009, 1(1): 169-192
    Shi H, Jin F F, Wills R C J, et al. Global decline in ocean memory over the 21st Century[J]. Science Advances, 2022, 8(18): eabm3468
    Riebesell U, Wolf-Gladrow D A, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates[J]. Nature, 1993, 361(6409): 249-251
    Giovagnetti V, Brunet C, Conversano F, et al. Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: A mesocosm experiment in the Mediterranean Sea[J]. Biogeosciences, 2012, 10: 2973-2991
    Jiang L Q, Feely R, Brendan R, et al. Climatological distribution of aragonite saturation state in the global oceans[J]. Global Biogeochemical Cycles, 2015, 29(10): 1656-1673
    Aluwihare L, Meador T. Chemical Composition of Marine Dissolved Organic Nitrogen[M]. Capone D G, Bronk D, Mulholland M R, et al. Eds. Nitrogen in the Marine Environment. 2nd Edition. Elsevier Inc., 2008: 95-140
    Rost B, Zondervan I, Wolf-Gladrow D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions[J]. Marine Ecology Progress Series, 2008, 373: 227-237
    Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240
    Torstensson A, Chierici M, Wulff A. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula[J]. Polar Biology, 2012, 35(2): 205-214
    Eberlein T, Van de Waal D B, Rost B. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species[J]. Physiologia Plantarum, 2014, 151(4): 468-479
    Lian Z R, Li F, He X P, et al. Rising CO2 will increase toxicity of marine dinoflagellate Alexandrium minutum[J]. Journal of Hazardous Materials, 2022, 431: 128627
    Clement R, Lignon S, Mansuelle P, et al. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: A proteomic approach[J]. Scientific Reports, 2017, 7: 42333
    贺云凤, 逄凯, 李克强, 等. NH4-N氮源下海洋酸化对东海原甲藻和米氏凯伦藻生长的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(5): 94-103 He Y F, Pang K, Li K Q, et al. Effects of ocean acidification on the growth of Prorocentrum donghaiense and Karenia mikimotoi under NH4-N source[J]. Periodical of Ocean University of China, 2020, 50(5): 94-103(in Chinese)
    Spilling K, Paul A J, Virkkala N, et al. Ocean acidification decreases plankton respiration: Evidence from a mesocosm experiment[J]. Biogeosciences, 2016, 13(16): 1-35
    Mercado J M, Figueroa F L, Niell F X, et al. A new method for estimating external, carbonic anhydrase activity in macroalgae[J]. Journal of Phycology, 1997, 33(6): 999-1006
    杨安强. 多重环境因子变化对赤潮异弯藻生长的影响[D]. 上海: 华东师范大学, 2021: 78-79 Yang A Q. Effect of multiple environment factors on the growth of Heterosigma akashiwo[D]. Shanghai: East China Normal University, 2021: 78

    -79(in Chinese)

    贾民娟. 不同CO2浓度对微藻生长的影响[D]. 济南: 山东大学, 2019: 24-25, 36-37
    郝爽. 海洋酸化对微小亚历山大藻产毒的影响和调控机制初探[D]. 济南: 山东大学, 2021: 41, 53-55
    徐金涛, 庞敏, 马新, 等. CO2加富对塔玛亚历山大藻叶绿素荧光参数及产毒的影响[J]. 海洋与湖沼, 2016, 47(3): 557-563

    Xu J T, Pang M, Ma X, et al. Carbon dioxide enrichment affects chlorophyll fluorescence and toxin production of Alexandrium tamarense[J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 557-563(in Chinese)

    胡顺鑫, 杨丁, 唐学玺, 等. 海水酸化对米氏凯伦藻和盐生杜氏藻种群增长和种间竞争的影响[J]. 海洋与湖沼, 2017, 48(4): 777-785

    Hu S X, Yang D, Tang X X, et al. Ocean acidification on population growth and inter-species competition between Karenia mikimotoi and Dunaliella salina[J]. Oceanologia et Limnologia Sinica, 2017, 48(4): 777-785(in Chinese)

    Tatters A O, Fu F X, Hutchins D A. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta[J]. PLoS One, 2012, 7(2): e32116
    Clement R, Lignon S, Mansuelle P, et al. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: A proteomic approach[J]. Scientific Reports, 2017, 7: 1-12
    Brandenburg K M, Velthuis M, Van de Waal D B. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels[J]. Global Change Biology, 2019, 25(8): 2607-2618
    Pang M, Xu J T, Qu P, et al. Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins[J]. Harmful Algae, 2017, 68: 240-247
    Sun J, Hutchins D, Feng Y Y, et al. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries[J]. Limnology and Oceanography, 2011, 56(3): 829-840
    Jin P, Wang T F, Liu N N, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels[J]. Nature Communications, 2015, 6: 8714
    Hardison D, Sunda W, Tester P, et al. Increased cellular brevetoxins in the red tide dinoflagellate Karenia brevis under CO2 limitation of growth rate: Evolutionary implications and potential effects on bloom toxicity[J]. Limnology and Oceanography, 2014, 59(2): 560-577
    Hattenrath-Lehmann Theresa K, Smith Juliette L, Wallace Ryan B, et al. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense[J]. Limnology and Oceanography, 2015, 60(1): 198-214
    Schmidt L, Hansen P J. Allelopathy in the prymnesiophyte Chrysochromulina polylepis: Effect of cell concentration, growth phase and pH[J]. Marine Ecology Progress Series, 2001, 216: 67-81
    van de Waal D B, Eberlein T, John U, et al. Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense[J]. Toxicon: Official Journal of the International Society on Toxinology, 2014, 78: 58-67
    Fu F X, Place A R, Garcia N S, et al. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum[J]. Aquatic Microbial Ecology, 2010, 59: 55-65
    Kremp A, Godhe A, Egardt J, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions[J]. Ecology and Evolution, 2012, 2(6): 1195-1207
    司冉冉, 关万春, 蔡景波, 等. 氮源对塔玛亚历山大藻生长和毒性的影响[J]. 生态学杂志, 2017, 36(10): 2880-2885
    杨晶晶. 富营养化和海洋酸化对典型浮游植物群落生理生态特征的影响[D]. 杭州: 浙江大学, 2017: 56-61
    Lundholm N, Hansen P J, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the Genera Pseudo-nitzschia and Nitzschia [J]. Marine Ecology Progress Series, 2004, 273: 1-15
    Trimborn S, Lundholm N, Thoms S, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: The effect of pH-induced changes in seawater carbonate chemistry[J]. Physiologia Plantarum, 2008, 133(1): 92-105
    郝爽, 刘丽君, 陈军辉, 等. 高氮磷比与酸化共同作用对微小亚历山大藻生长和产毒的影响[J]. 海洋科学, 2021, 45(2): 1-10

    Hao S, Liu L J, Chen J H, et al. Effects of acidification and high N/P ratios on toxin production in Alexandrium minutum[J]. Marine Sciences, 2021, 45(2): 1-10(in Chinese)

    Eberlein T, Waal D V D, Brandenburg K, et al. Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species[J]. Marine Ecology Progress Series, 2016, 543: 127-140
    高欣, 许敏, 薛学洋, 等. CO2浓度升高和温度升高对铜绿微囊藻生长及产毒影响[J]. 环境科学与技术, 2014, 37(9): 1-4

    Gao X, Xu M, Xue X Y, et al. Effects of elevated CO2 and temperature on growth and microcystin production of Microcystis aeruginosa[J]. Environmental Science & Technology, 2014, 37(9): 1-4(in Chinese)

    Wohlrab S, John U, Klemm K, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton[J]. Harmful Algae, 2020, 92: 101697
  • 加载中
计量
  • 文章访问数:  2180
  • HTML全文浏览数:  2180
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-29
宫于琛, 屈佩, 刘瑞娟, 陈洪举, 庞敏. 环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展[J]. 生态毒理学报, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002
引用本文: 宫于琛, 屈佩, 刘瑞娟, 陈洪举, 庞敏. 环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展[J]. 生态毒理学报, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002
Gong Yuchen, Qu Pei, Liu Ruijuan, Chen Hongju, Pang Min. Research Progress on Effect of Elevated CO2 on Growth and Toxicity of Marine Toxic Microalgae[J]. Asian journal of ecotoxicology, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002
Citation: Gong Yuchen, Qu Pei, Liu Ruijuan, Chen Hongju, Pang Min. Research Progress on Effect of Elevated CO2 on Growth and Toxicity of Marine Toxic Microalgae[J]. Asian journal of ecotoxicology, 2023, 18(2): 141-151. doi: 10.7524/AJE.1673-5897.20220429002

环境CO2浓度升高对海洋有毒微藻生长及产毒的影响研究进展

    通讯作者: 庞敏, E-mail: pangmin@fio.org.cn
    作者简介: 宫于琛(1999—),女,硕士研究生,研究方向为海洋环境科学,E-mail: gongyuchen@stu.ouc.edu.cn
  • 1. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛 266100;
  • 2. 自然资源部第一海洋研究所自然资源部海洋生态环境科学与技术重点实验室, 青岛 266061;
  • 3. 青岛海洋科学与技术试点国家实验室, 海洋生态与环境科学功能实验室, 青岛 266237
基金项目:

山东省自然科学基金资助项目(ZR2021MD014);国家自然科学基金青年基金项目(41606140);中国科学院海洋生态与环境科学重点实验室(中国科学院海洋研究所)开放基金项目(KLMEES201803)

摘要: 近年来,由人类活动引起的近海环境污染不断加剧,这使得有害藻华(harmful algal blooms, HABs)暴发的范围及危害不断扩大,其中有毒微藻藻华也因其毒性效应而逐渐受到关注。18世纪后期以来,全球气候变化加剧了有毒藻华的发生和发展,其中有毒藻华暴发的潜力和危害性也可能增加,环境二氧化碳(CO2)就是其中一个影响因素。到2019年为止,环境CO2浓度已达到工业化(1750年)前的148%,对有毒藻华的发生、发展产生了重要影响。CO2浓度的升高能够缓解微藻的碳限制,促进产毒藻类的固碳和生长;同时,CO2溶于海水使得海水pH降低,也有可能对某些有毒藻华微藻的生长产生影响。CO2浓度升高还会影响有毒微藻藻毒素的合成,提高产毒效率或促使毒素由低毒性组分转化为高毒性。本文综述了环境CO2浓度升高对有毒藻华微藻生长和产毒等的研究进展,探讨了CO2升高背景下有毒藻华暴发的潜力及危害性,以期为深入研究全球变化对有毒藻华的影响提供参考,并为有毒藻华监测预警方案的优化提供理论支撑。

English Abstract

参考文献 (74)

返回顶部

目录

/

返回文章
返回