微囊藻毒素生物学功能的研究进展

张紫馨, 王寅初, 刘钦弘, 焦绪栋, 王璐. 微囊藻毒素生物学功能的研究进展[J]. 生态毒理学报, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001
引用本文: 张紫馨, 王寅初, 刘钦弘, 焦绪栋, 王璐. 微囊藻毒素生物学功能的研究进展[J]. 生态毒理学报, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001
Zhang Zixin, Wang Yinchu, Liu Qinhong, Jiao Xudong, Wang Lu. Research Progress on Biological Function of Microcystins[J]. Asian journal of ecotoxicology, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001
Citation: Zhang Zixin, Wang Yinchu, Liu Qinhong, Jiao Xudong, Wang Lu. Research Progress on Biological Function of Microcystins[J]. Asian journal of ecotoxicology, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001

微囊藻毒素生物学功能的研究进展

    作者简介: 张紫馨(1999—),女,硕士研究生,研究方向为药学,E-mail: z15166354661@163.com
    通讯作者: 王璐, E-mail: wanglu@ytu.edu.cn
  • 基金项目:

    国家重点研发计划“水华蓝藻合成微生物控制系统构建与应用”(2018YFA0903000);烟台大学研究生科技创新基金(GGIFYTU2228)

  • 中图分类号: X171.5

Research Progress on Biological Function of Microcystins

    Corresponding author: Wang Lu, wanglu@ytu.edu.cn
  • Fund Project:
  • 摘要: 在全球气候变化的大背景下,藻类水华暴发愈加频繁,产生的藻毒素对人类和动物的健康造成了严峻的威胁,其中以微囊藻毒素最为突出。阐明以微囊藻毒素为代表的藻毒素产生的原因无疑对水环境治理具有长远意义,然而微囊藻毒素的生物学功能至今尚不明确。微囊藻毒素的产生和多种环境条件相关,而微囊藻中也只有部分是产毒株系。尽管该毒素的毒理学靶点主要在人类和其他哺乳动物的蛋白磷酸酶,然而结合进化生物学和地质历史的证据可知,微囊藻毒素的出现比包括哺乳动物在内的后生动物的起源要早得多,因此微囊藻毒素并非藻类为了防御后生动物摄食而进化出来的,这引发了该毒素原本生物学功能的多年广泛研讨。本文综述了近年来关于微囊藻毒素生物学功能的新进展,并侧重在地质历史及当今全球气候变化背景下讨论该领域的研究意义。
  • 加载中
  • 沈强, 胡菊香. 全球气候变化下的长江流域蓝藻水华暴发趋势[C]// 中国水利学会. 中国原水论坛专辑. 宁波: 中国水利学会, 2010: 359-360
    谢平. 微囊藻毒素对人类健康影响相关研究的回顾[J]. 湖泊科学, 2009, 21(5): 603-613

    Xie P. A review on the studies related to the effects of microcystins on human health[J]. Journal of Lake Sciences, 2009, 21(5): 603-613(in Chinese)

    Fontanillo M, Köhn M. Microcystins: Synthesis and structure-activity relationship studies toward PP1 and PP2A[J]. Bioorganic & Medicinal Chemistry, 2018, 26(6): 1118-1126
    Redouane E M, El Amrani Zerrifi S, El Khalloufi F, et al. Mode of action and fate of microcystins in the complex soil-plant ecosystems[J]. Chemosphere, 2019, 225: 270-281
    靳红梅, 常志州. 微囊藻毒素对陆生植物的污染途径及累积研究进展[J]. 生态学报, 2013, 33(11): 3298-3310

    Jin H M, Chang Z Z. The pollution way of microcystins and their bioaccumulation in terrestrial plants: A review[J]. Acta Ecologica Sinica, 2013, 33(11): 3298-3310(in Chinese)

    胡智泉, 李敦海, 刘永定, 等. 微囊藻毒素对水生生物的生态毒理学研究进展[J]. 自然科学进展, 2006, 16(1): 14-20
    Zhang S Y, Du X D, Liu H H, et al. The latest advances in the reproductive toxicity of microcystin-LR[J]. Environmental Research, 2021, 192: 110254
    Ma Y, Liu H H, Du X D, et al. Advances in the toxicology research of microcystins based on Omics approaches[J]. Environment International, 2021, 154: 106661
    Tamele I J, Vasconcelos V. Microcystin incidence in the drinking water of Mozambique: Challenges for public health protection[J]. Toxins, 2020, 12(6): 368
    Hu L L, Shan K, Lin L Z, et al. Multi-year assessment of toxic genotypes and microcystin concentration in northern Lake Taihu, China[J]. Toxins, 2016, 8(1): 23
    Yang Z, Kong F X, Zhang M. Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu, China[J]. Environmental Monitoring and Assessment, 2016, 188(5): 280
    Carmichael W W, Boyer G L. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes[J]. Harmful Algae, 2016, 54: 194-212
    Kalaitzidou M P, Nannou C I, Lambropoulou D A, et al. First report of detection of microcystins in farmed Mediterranean mussels Mytilus galloprovincialis in Thermaikos Gulf in Greece[J]. Journal of Biological Research, 2021, 28(1): 8
    Koch M, Bowes G, Ross C, et al. Climate change and ocean acidification effects on seagrasses and marine macroalgae[J]. Global Change Biology, 2013, 19(1): 103-132
    Guinotte J M, Fabry V J. Ocean acidification and its potential effects on marine ecosystems[J]. Annals of the New York Academy of Sciences, 2008, 1134: 320-342
    Chiarenza A A, Farnsworth A, Mannion P D, et al. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17084-17093
    Castle J W, Rodgers J H. Hypothesis for the role of toxin-producing algae in Phanerozoic mass extinctions based on evidence from the geologic record and modern environments[J]. Environmental Geosciences, 2011, 18(1): 58-60
    Mata S A, Bottjer D J. Microbes and mass extinctions: Paleoenvironmental distribution of microbialites during times of biotic crisis[J]. Geobiology, 2012, 10(1): 3-24
    Yao L, Aretz M, Chen J T, et al. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors[J]. Scientific Reports, 2016, 6(1): 1-9
    Foster W J, Lehrmann D J, Yu M Y, et al. Facies selectivity of benthic invertebrates in a Permian/Triassic boundary microbialite succession: Implications for the “microbialite refuge” hypothesis[J]. Geobiology, 2019, 17(5): 523-535
    Takahashi S, Yamakita S, Suzuki N. Natural assemblages of the conodont Clarkina in lowermost Triassic deep-sea black claystone from northeastern Japan, with probable soft-tissue impressions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 212-229
    Gliwa J, Ghaderi A, Leda L, et al. Aras Valley (northwest Iran):High-resolution stratigraphy of a continuous central Tethyan Permian-Triassic boundary section[J]. Fossil Record, 2020, 23(1): 33-69
    Sephton M, Amor K, Franchi I, et al. Carbon and nitrogen isotope disturbances and an end-Norian (Late Triassic) extinction event[J]. Geology, 2002, 30(12): 1119-1122
    Duan X, Shi Z Q, Chen Y L, et al. Early Triassic Griesbachian microbial mounds in the Upper Yangtze Region, southwest China: Implications for biotic recovery from the latest Permian mass extinction[J]. PLoS One, 2018, 13(8): e0201012
    Rantala A, Fewer D P, Hisbergues M, et al. Phylogenetic evidence for the early evolution of microcystin synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 568-573
    Babica P, Bláha L, Maršálek B. Exploring the natural role of microcystins—A review of effects on photoautotrophic organisms[J]. Journal of Phycology, 2006, 42(1): 9-20
    Kaplan A, Harel M, Kaplan-Levy R N, et al. The languages spoken in the water body (or the biological role of cyanobacterial toxins)[J]. Frontiers in Microbiology, 2012, 3: 138
    Omidi A, Esterhuizen-Londt M, Pflugmacher S. Still challenging: The ecological function of the cyanobacterial toxin microcystin—What we know so far[J]. Toxin Reviews, 2018, 37(2): 87-105
    Schatz D, Keren Y, Vardi A, et al. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins[J]. Environmental Microbiology, 2007, 9(4): 965-970
    Wang S Q, Yang S Y, Zuo J, et al. Simultaneous removal of the freshwater bloom-forming cyanobacterium microcystis and cyanotoxin microcystins via combined use of algicidal bacterial filtrate and the microcystin-degrading enzymatic agent, MlrA[J]. Microorganisms, 2021, 9(8): 1594
    Waters M N, Brenner M, Curtis J H, et al. Harmful algal blooms and cyanotoxins in Lake Amatitlán, Guatemala, coincided with ancient Maya occupation in the watershed[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(48): e2109919118
    Zi J M, Pan X F, MacIsaac H J, et al. cyanobacteria blooms induce embryonic heart failure in an endangered fish species[J]. Aquatic Toxicology, 2018, 194: 78-85
    Omidi A, Pflugmacher S, Kaplan A, et al. Reviewing interspecies interactions as a driving force affecting the community structure in lakes via cyanotoxins[J]. Microorganisms, 2021, 9(8): 1583
    Cao Q, Steinman A D, Wan X, et al. Combined toxicity of microcystin-LR and copper on lettuce (Lactuca sativa L.)[J]. Chemosphere, 2018, 206: 474-482
    Budzałek G, Śliwińska-Wilczewska S, Klin M, et al. Changes in growth, photosynthesis performance, pigments, and toxin contents of bloom-forming cyanobacteria after exposure to macroalgal allelochemicals[J]. Toxins, 2021, 13(8): 589
    Brêda-Alves F, de Oliveira Fernandes V, Cordeiro-Araújo M K, et al. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii[J]. Environmental Science and Pollution Research International, 2021, 28(9): 11528-11539
    Chen G Y, Zheng Z H, Bai M X, et al. Chronic effects of microcystin-LR at environmental relevant concentrations on photosynthesis of Typha angustifolia Linn[J]. Ecotoxicology, 2020, 29(5): 514-523
    Hernández-Zamora M, Santiago-Martínez E, Martínez-Jerónimo F. Toxigenic Microcystis aeruginosa (cyanobacteria) affects the population growth of two common green microalgae: Evidence of other allelopathic metabolites different to cyanotoxins[J]. Journal of Phycology, 2021, 57(5): 1530-1541
    Yang J, Deng X R, Xian Q M, et al. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: Microcystin-LR as a potential allelochemical[J]. Hydrobiologia, 2014, 727(1): 65-73
    García-Espín L, Cantoral E A, Asencio A D, et al. Microcystins and cyanophyte extracts inhibit or promote the photosynthesis of fluvial algae. Ecological and management implications[J]. Ecotoxicology, 2017, 26(5): 658-666
    Chia M A, Jankowiak J G, Kramer B J, et al. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions[J]. Harmful Algae, 2018, 74: 67-77
    González-Pleiter M, Cirés S, Wörmer L, et al. Ecotoxicity assessment of microcystins from freshwater samples using a bioluminescent cyanobacterial bioassay[J]. Chemosphere, 2020, 240: 124966
    Wang N Y, Wang C. Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L.[J]. Aquatic Toxicology, 2018, 200: 197-205
    Lu N, Sun Y F, Wei J J, et al. Toxic Microcystis aeruginosa alters the resource allocation in Daphnia mitsukuri responding to fish predation cues[J]. Environmental Pollution, 2021, 278: 116918
    Henao E, Rzymski P, Waters M N. A review on the study of cyanotoxins in paleolimnological research: Current knowledge and future needs[J]. Toxins, 2019, 12(1): 6
    Schatz D, Keren Y, Vardi A, et al. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins[J]. Environmental Microbiology, 2007, 9(4): 965-970
    Zilliges Y, Kehr J C, Meissner S, et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions[J]. PLoS One, 2011, 6(3): e17615
    Wang X, Wang P F, Wang C, et al. Relationship between photosynthetic capacity and microcystin production in toxic Microcystis aeruginosa under different iron regimes[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1954
    Walls J T, Wyatt K H, Doll J C, et al. Hot and toxic: Temperature regulates microcystin release from cyanobacteria[J]. The Science of the Total Environment, 2018, 610-611: 786-795
    Xue Q J, Steinman A D, Xie L Q, et al. Seasonal variation and potential risk assessment of microcystins in the sediments of Lake Taihu, China[J]. Environmental Pollution, 2020, 259: 113884
    Zhu C M, Zhang J Y, Nawaz M Z, et al. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu[J]. The Science of the Total Environment, 2019, 669: 29-40
    Wang C B, Feng B, Tian C C, et al. Quantitative study on the survivability of Microcystis colonies in lake sediments[J]. Journal of Applied Phycology, 2018, 30(1): 495-506
    Feng B, Wang C B, Wu X Q, et al. Involvement of microcystins, colony size and photosynthetic activity in the benthic recruitment of Microcystis[J]. Journal of Applied Phycology, 2019, 31(1): 223-233
    Yu J, Zhu H, Shutes B, et al. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR[J]. Environmental Pollution, 2022, 301: 118971
    Trung B, Vollebregt M E, Lürling M. Warming and salt intrusion affect microcystin production in tropical bloom-forming Microcystis[J]. Toxins, 2022, 14(3): 214
    Jia J M, Chen Q W, Wang M, et al. The production and release of microcystin related to phytoplankton biodiversity and water salinity in two cyanobacteria blooming lakes[J]. Environmental Toxicology and Chemistry, 2018, 37(9): 2312-2322
    Walker D, Fathabad S G, Tabatabai B, et al. Microcystin levels in selected cyanobacteria exposed to varying salinity[J]. Journal of Water Resource and Protection, 2019, 11(4): 395-403
    李伟, 杨雨玲, 黄松, 等. 产毒与不产毒铜绿微囊藻对模拟酸雨及紫外辐射的生理响应[J]. 生态学报, 2015, 35(23): 7615-7624

    Li W, Yang Y L, Huang S, et al. Physiological responses of toxigenic and non-toxigenic strains of Microcystis aeruginosa to simulated acid rain and UV radiation[J]. Acta Ecologica Sinica, 2015, 35(23): 7615-7624(in Chinese)

    Zhou J, Qin B Q, Han X X, et al. Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods[J]. Harmful Algae, 2016, 55: 213-220
    Kurmayer R, Christiansen G, Chorus I. The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee[J]. Applied and Environmental Microbiology, 2003, 69(2): 787-795
    Gan N Q, Xiao Y, Zhu L, et al. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp.[J]. Environmental Microbiology, 2012, 14(3): 730-742
    Sedmak B, Elersek T. Microcystins induce morphological and physiological changes in selected representative phytoplanktons[J]. Microbial Ecology, 2006, 51(4): 508-515
    Kehr J C, Zilliges Y, Springer A, et al. A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa[J]. Molecular Microbiology, 2006, 59(3): 893-906
    Takaara T, Sasaki S, Fujii M, et al. Lectin-stimulated cellular iron uptake and toxin generation in the freshwater cyanobacterium Microcystis aeruginosa[J]. Harmful Algae, 2019, 83: 25-33
    陈何舟, 左胜鹏, 秦伯强, 等. 微囊藻聚集与迁移机制的研究进展[J]. 环境科学与技术, 2019, 42(1): 142-149

    Chen H Z, Zuo S P, Qin B Q, et al. Research progress in mechanism of Microcystis aggregation and migration[J]. Environmental Science & Technology, 2019, 42(1): 142-149(in Chinese)

    Xiao M, Willis A, Burford M A, et al. Review: A meta-analysis comparing cell-division and cell-adhesion in Microcystis colony formation[J]. Harmful Algae, 2017, 67: 85-91
    Phelan R R, Downing T G. The localization of exogenous microcystin LR taken up by a non-microcystin producing cyanobacterium[J]. Toxicon, 2014, 89: 87-90
    Makower A K, Schuurmans J M, Groth D, et al. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806[J]. Applied and Environmental Microbiology, 2015, 81(2): 544-554
    Jüttner F, Lüthi H. Topology and enhanced toxicity of bound microcystins in Microcystis PCC 7806[J]. Toxicon, 2008, 51(3): 388-397
    El-Shehawy R, Gorokhova E, Fernández-Piñas F, et al. Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments?[J]. Water Research, 2012, 46(5): 1420-1429
    甘南琴, 魏念, 宋立荣. 微囊藻毒素生物学功能研究进展[J]. 湖泊科学, 2017, 29(1): 1-8

    Gan N Q, Wei N, Song L R. Recent progress in research of the biological function of microcystins[J]. Journal of Lake Sciences, 2017, 29(1): 1-8(in Chinese)

    Meissner S, Steinhauser D, Dittmann E. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis[J]. Environmental Microbiology, 2015, 17(5): 1497-1509
    Yu L, Kong F X, Zhang M, et al. The dynamics of microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu, China[J]. Toxins, 2014, 6(12): 3238-3257
    Zhang Y, Jiang H B, Liu S W, et al. Effects of dissolved inorganic carbon on competition of the bloom-forming cyanobacterium Microcystis aeruginosa with the green alga Chlamydomonas microsphaera[J]. European Journal of Phycology, 2012, 47(1): 1-11
    Dittmann E, Erhard M, Kaebernick M, et al. Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806[J]. Microbiology, 2001, 147(Pt 11): 3113-3119
    Dai R H, Wang P F, Jia P L, et al. A review on factors affecting microcystins production by algae in aquatic environments[J]. World Journal of Microbiology and Biotechnology, 2016, 32(3): 51
    Santos A, Rachid C, Pacheco A B, et al. Biotic and abiotic factors affect microcystin-LR concentrations in water/sediment interface[J]. Microbiological Research, 2020, 236: 126452
    Schreidah C M, Ratnayake K, Senarath K, et al. Microcystins: Biogenesis, toxicity, analysis, and control[J]. Chemical Research in Toxicology, 2020, 33(9): 2225-2246
    Jacinavicius F R, Geraldes V, Crnkovic C M, et al. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria[J]. FEMS Microbiology Ecology, 2021, 97(1): fiaa243
    Wang B L, Wang X, Hu Y W, et al. The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium[J]. Chemosphere, 2015, 141: 34-43
    Evanthia M, Miquel L, Jutta F, et al. Temperature effects explain continental scale distribution of cyanobacterial toxins[J]. Toxins, 2018, 10(4): 156
    Scherer P I, Raeder U, Geist J, et al. Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa[J]. MicrobiologyOpen, 2017, 6(1): e00393
    Savadova-Ratkus K, Mazur-Marzec H, Karosienė J, et al. Interplay of nutrients, temperature, and competition of native and alien cyanobacteria species growth and cyanotoxin production in temperate lakes[J]. Toxins, 2021, 13(1): 23
    Taranu Z E, Pick F R, Creed I F, et al. Meteorological and nutrient conditions influence microcystin congeners in freshwaters[J]. Toxins, 2019, 11(11): 620
    Tanvir R U, Hu Z Q, Zhang Y Y, et al. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters[J]. Environmental Pollution, 2021, 290: 118056
    Wagner N D, Quach E, Buscho S, et al. Nitrogen form, concentration, and micronutrient availability affect microcystin production in cyanobacterial blooms[J]. Harmful Algae, 2021, 103: 102002
    Wang M, Shi W Q, Chen Q W, et al. Effects of nutrient temporal variations on toxic genotype and microcystin concentration in two eutrophic lakes[J]. Ecotoxicology and Environmental Safety, 2018, 166: 192-199
    刘雪梅, 章光新. 气候变化对湖泊蓝藻水华的影响研究综述[J]. 水科学进展, 2022, 33(2): 316-326

    Liu X M, Zhang G X. A review of studies on the impact of climate change on cyanobacteria blooms in lakes[J]. Advances in Water Science, 2022, 33(2): 316-326(in Chinese)

    王成林, 潘维玉, 韩月琪, 等. 全球气候变化对太湖蓝藻水华发展演变的影响[J]. 中国环境科学, 2010, 30(6): 822-828

    Wang C L, Pan W Y, Han Y Q, et al. Effect of global climate change on cyanobacteria bloom in Taihu Lake[J]. China Environmental Science, 2010, 30(6): 822-828(in Chinese)

    Singo A, Myburgh J G, Laver P N, et al. Vertical transmission of microcystins to Nile crocodile (Crocodylus niloticus) eggs[J]. Toxicon, 2017, 134: 50-56
    Gehringer M M, Wannicke N. Climate change and regulation of hepatotoxin production in cyanobacteria[J]. FEMS Microbiology Ecology, 2014, 88(1): 1-25
    Dziallas C, Grossart H P. Increasing oxygen radicals and water temperature select for toxic Microcystis sp.[J]. PLoS One, 2011, 6(9): e25569
    Bui T, Dao T S, Vo T G, et al. Warming affects growth rates and microcystin production in tropical bloom-forming Microcystis strains[J]. Toxins, 2018, 10(3): 123
    Wyner Y, DeSalle R. Distinguishing extinction and natural selection in the anthropocene: Preventing the Panda paradox through practical education measures: We must rethink evolution teaching to prevent misuse of natural selection to biologically justify today's human caused mass extinction crisis[J]. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2020, 42(2): e1900206
    Spalding C, Hull P M. Towards quantifying the mass extinction debt of the Anthropocene[J]. Proceedings Biological Sciences, 2021, 288(1949): 20202332
  • 加载中
计量
  • 文章访问数:  2811
  • HTML全文浏览数:  2811
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-15
张紫馨, 王寅初, 刘钦弘, 焦绪栋, 王璐. 微囊藻毒素生物学功能的研究进展[J]. 生态毒理学报, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001
引用本文: 张紫馨, 王寅初, 刘钦弘, 焦绪栋, 王璐. 微囊藻毒素生物学功能的研究进展[J]. 生态毒理学报, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001
Zhang Zixin, Wang Yinchu, Liu Qinhong, Jiao Xudong, Wang Lu. Research Progress on Biological Function of Microcystins[J]. Asian journal of ecotoxicology, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001
Citation: Zhang Zixin, Wang Yinchu, Liu Qinhong, Jiao Xudong, Wang Lu. Research Progress on Biological Function of Microcystins[J]. Asian journal of ecotoxicology, 2023, 18(2): 128-140. doi: 10.7524/AJE.1673-5897.20220715001

微囊藻毒素生物学功能的研究进展

    通讯作者: 王璐, E-mail: wanglu@ytu.edu.cn
    作者简介: 张紫馨(1999—),女,硕士研究生,研究方向为药学,E-mail: z15166354661@163.com
  • 1. 烟台大学药学院, 烟台 264005;
  • 2. 中国科学院烟台海岸带研究所, 烟台 264003;
  • 3. 中国科学院海洋大科学研究中心, 青岛 266071
基金项目:

国家重点研发计划“水华蓝藻合成微生物控制系统构建与应用”(2018YFA0903000);烟台大学研究生科技创新基金(GGIFYTU2228)

摘要: 在全球气候变化的大背景下,藻类水华暴发愈加频繁,产生的藻毒素对人类和动物的健康造成了严峻的威胁,其中以微囊藻毒素最为突出。阐明以微囊藻毒素为代表的藻毒素产生的原因无疑对水环境治理具有长远意义,然而微囊藻毒素的生物学功能至今尚不明确。微囊藻毒素的产生和多种环境条件相关,而微囊藻中也只有部分是产毒株系。尽管该毒素的毒理学靶点主要在人类和其他哺乳动物的蛋白磷酸酶,然而结合进化生物学和地质历史的证据可知,微囊藻毒素的出现比包括哺乳动物在内的后生动物的起源要早得多,因此微囊藻毒素并非藻类为了防御后生动物摄食而进化出来的,这引发了该毒素原本生物学功能的多年广泛研讨。本文综述了近年来关于微囊藻毒素生物学功能的新进展,并侧重在地质历史及当今全球气候变化背景下讨论该领域的研究意义。

English Abstract

参考文献 (95)

返回顶部

目录

/

返回文章
返回