离子液体生态毒理研究进展

褚玲珑, 赵晓祥. 离子液体生态毒理研究进展[J]. 生态毒理学报, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002
引用本文: 褚玲珑, 赵晓祥. 离子液体生态毒理研究进展[J]. 生态毒理学报, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002
Chu Linglong, Zhao Xiaoxiang. Advances in Ecotoxicology of Ionic Liquids[J]. Asian journal of ecotoxicology, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002
Citation: Chu Linglong, Zhao Xiaoxiang. Advances in Ecotoxicology of Ionic Liquids[J]. Asian journal of ecotoxicology, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002

离子液体生态毒理研究进展

    作者简介: 褚玲珑(1996-),女,博士研究生,研究方向为生态毒理学,E-mail:2191565@mail.dhu.edu.cn
    通讯作者: 赵晓祥, E-mail: zxx@dhu.edu.cn
  • 基金项目:

    上海市生态环境局科研项目(沪环科2021-10)

  • 中图分类号: X171.5

Advances in Ecotoxicology of Ionic Liquids

    Corresponding author: Zhao Xiaoxiang, zxx@dhu.edu.cn
  • Fund Project:
  • 摘要: 近年来,离子液体在化工领域中的应用越来越广泛,为了让使用者更加了解“绿色溶剂”——离子液体,从而更加安全合理地使用它,本文简单介绍了离子液体的结构与性质,阐述了离子液体对微生物(费氏弧菌等)、植物(小麦、水稻、蚕豆、拟南芥和藻类等)、动物(鱼类、小鼠、蚯蚓和蚕等)、细胞(正常角质形成细胞HaCaT、肝细胞HepG、人宫颈癌细胞Hela和草地贪夜蛾细胞等)、酶(脱氢酶、胰蛋白酶等)和脱氧核糖核酸(deoxyribonucleic acid, DNA)的毒性效应,重点分析了离子液体对植物和动物的毒理机制,并对未来离子液体的毒理研究作出展望。
  • 加载中
  • Paternò A, D'Anna F, Musumarra G, et al. A multivariate insight into ionic liquids toxicities[J]. RSC Advances, 2014, 4(46):23985-24000
    Casal-Dujat L, Rodrigues M, Yagüe A, et al. Gemini imidazolium amphiphiles for the synthesis, stabilization, and drug delivery from gold nanoparticles[J]. Langmuir, 2012, 28(5):2368-2381
    Sheldon R A. Green solvents for sustainable organic synthesis:State of the art[J]. Green Chemistry, 2005, 7(5):267-278
    李永祥, 张玲玲, 刘雁红, 等. 离子液体在食品领域中的应用研究进展[J]. 食品工业科技, 2016, 37(5):394-400

    Li Y X, Zhang L L, Liu Y H, et al. Advance in research and application of ionic liquids in food science[J]. Science and Technology of Food Industry, 2016, 37(5):394-400(in Chinese)

    Ye Q, Gao T T, Wan F, et al. Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications[J]. Journal of Materials Chemistry, 2012, 22(26):13123-13131
    Xiao Y, Malhotra S V. Friedel-crafts acylation reactions in pyridinium based ionic liquids[J]. Journal of Organometallic Chemistry, 2005, 690(15):3609-3613
    Stumpf S, Billard I, Panak P J, et al. Differences of Eu(Ⅲ) and Cm(Ⅲ) chemistry in ionic liquids:Investigations by TRLFS[J]. Dalton Transactions, 2007(2):240-248
    Mrozik W, Jungnickel C, Ciborowski T, et al. Predicting mobility of alkylimidazolium ionic liquids in soils[J]. Journal of Soils and Sediments, 2009, 9(3):237-245
    Magina S, Barros-Timmons A, Ventura S P M, et al. Evaluating the hazardous impact of ionic liquids-Challenges and opportunities[J]. Journal of Hazardous Materials, 2021, 412:125215
    Holbrey J D, Seddon K R. Ionic liquids[J]. Clean Products and Processes, 1999, 1(4):223-236
    Ventura S P, Santos L D, Saraiva J A, et al. Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B[J]. World Journal of Microbiology & Biotechnology, 2012, 28(6):2303-2310
    Ventura S P, de Barros R L, Sintra T, et al. Simple screening method to identify toxic/non-toxic ionic liquids:Agar diffusion test adaptation[J]. Ecotoxicology and Environmental Safety, 2012, 83:55-62
    Ventura S P, Marques C S, Rosatella A A, et al. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria[J]. Ecotoxicology and Environmental Safety, 2012, 76(2):162-168
    Zhang L M, Gellerstedt G, Ralph J, et al. NMR studies on the occurrence of spirodienone structures in lignins[J]. Journal of Wood Chemistry and Technology, 2006, 26(1):65-79
    Zhang S J, Sun N, He X Z, et al. Physical properties of ionic liquids:Database and evaluation[J]. Journal of Physical and Chemical Reference Data, 2006, 35(4):1475-1517
    Angell C A, Byrne N, Belieres J P. Parallel developments in aprotic and protic ionic liquids:Physical chemistry and applications[J]. Accounts of Chemical Research, 2007, 40(11):1228-1236
    Hayes R, Warr G G, Atkin R. Structure and nanostructure in ionic liquids[J]. Chemical Reviews, 2015, 115(13):6357-6426
    Mu T, Han B. Structures and Thermodynamic Properties of Ionic Liquids[M]//Structures and Interactions of Ionic Liquids, Structure and Bonding. Springer-Verlag, Berlin and Heidelberg, 2014:107-139
    Hu Y F, Peng X M. Effect of the structures of ionic liquids on their physical chemical properties[J]. Structure and Bonding, 2014, 151(16):141-174
    Fredlake C, Crosthwaite J, Hert D, et al. Thermophysical properties of imidazolium-based ionic liquids[J]. Chemical Engineering Journal, 2004, 49:954-964
    Chen Y, Mu T C. Thermal Stability of Ionic Liquids[M]//Encyclopedia of Ionic Liquids. Singapore:Springer Singapore, 2019:1-13
    Maton C, de Vos N, Stevens C V. Ionic liquid thermal stabilities:Decomposition mechanisms and analysis tools[J]. Chemical Society Reviews, 2013, 42(13):5963-5977
    Ngo H L, Karen L C, Liesl H, et al. Thermal properties of imidazolium ionic liquids[J]. Thermochimica Acta, 2000, 357-358:97-102
    Okoturo O O, Vandernoot T J. Temperature dependence of viscosity for room temperature ionic liquids[J]. Journal of Electroanalytical Chemistry, 2004, 568:167-181
    Bhattacharjee A, Lopes D S, Mara F, et al. Thermophysical properties of phosphonium-based ionic liquids[J]. Fluid Phase Equilibria, 2015, 400:103-113
    Freire M G, Teles A R R, Rocha M A A, et al. Thermophysical characterization of ionic liquids able to dissolve biomass[J]. Journal of Chemical & Engineering Data, 2011, 56(12):4813-4822
    Zhou H C, Chen L F, Wei Z, et al. Effect of ionic composition on physicochemical properties of mono-ether functional ionic liquids[J]. Molecules, 2019, 24(17):3112
    Fang D W, Xia M C, Zuo J T, et al. Physicochemical properties of ionic liquids[Cnmim] [SbF6](n=4,5,6)[J]. The Journal of Chemical Thermodynamics, 2019, 131:360-368
    Hachicha R, Zarrougui R, Messaoudi S, et al. Physicochemical properties and theoretical studies of novel fragile ionic liquids based on N-allyl-N,N-dimethylethylammonium cation[J]. Journal of Molecular Liquids, 2019, 284:522-535
    Wang Z Y, Zhang J C, Lu B B, et al. Novel bio-renewable matrinium-based ionic liquids derived from Chinese herb medicine:Synthesis, physicochemical properties and biological activity[J]. Journal of Molecular Liquids, 2019, 296:111822
    Javadzadeh Y, Hamedeyaz S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease[M]//Trends in Helicobacter Pylori Infection. InTech, 2014:303-319
    Sydow M, Owsianiak M, Framski G, et al. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids:Effects of toxicity and biodegradation[J]. Ecotoxicology and Environmental Safety, 2018, 147:157-164
    Sun X, Zhu L S, Wang J H, et al. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity[J]. Ecotoxicology and Environmental Safety, 2017, 135:201-208
    Montalbán M G, Villora G, Licence P. Ecotoxicity assessment of dicationic versus monocationic ionic liquids as a more environmentally friendly alternative[J]. Ecotoxicology and Environmental Safety, 2018, 150:129-135
    Diaz E, Monsalvo V M, Lopez J, et al. Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays[J]. Ecotoxicology and Environmental Safety, 2018, 162:29-34
    Ƚawniczak Ƚ, Syguda A, Borkowski A, et al. Influence of oligomeric herbicidal ionic liquids with MCPA and dicamba anions on the community structure of autochthonic bacteria present in agricultural soil[J]. The Science of the Total Environment, 2016, 563-564:247-255
    Piotrowska A, Syguda A, Wyrwas B, et al. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida[J]. Chemosphere, 2017, 167:114-119
    Zhang C, Du Z K, Li B, et al. Evaluating toxicity of 1-octyl-3-methylimidazolium hexafluorophosphate to microorganisms in soil[J]. Chemosphere, 2018, 210:762-768
    Cheng C, Ma J C, Wang J H, et al. Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms[J]. Environmental Pollution, 2019, 255(Pt 2):113321
    Mena I F, Diaz E, Palomar J, et al. Cation and anion effect on the biodegradability and toxicity of imidazolium- and choline-based ionic liquids[J]. Chemosphere, 2020, 240:124947
    Delgado-Mellado N, Ayuso M, Villar-Chavero M M, et al. Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes[J]. SN Applied Sciences, 2019, 1(8):1-9
    Sintra T E, Nasirpour M, Siopa F, et al. Ecotoxicological evaluation of magnetic ionic liquids[J]. Ecotoxicology and Environmental Safety, 2017, 143:315-321
    Parajó J J, Macário I P E, Gaetano Y D, et al. Glycine-betaine-derived ionic liquids:Synthesis, characterization and ecotoxicological evaluation[J]. Ecotoxicology and Environmental Safety, 2019, 184:109580
    Pal S, Sar A, Dam B. Moderate halophilic bacteria, but not extreme halophilic archaea can alleviate the toxicity of short-alkyl side chain imidazolium-based ionic liquids[J]. Ecotoxicology and Environmental Safety, 2019, 184:109634
    You Y, Yi N. Toxicity and antimicrobial activities of ionic liquids with halogen anion[J]. Journal of Environmental Protection, 2011, 2(3):298-303
    Xu Y Q, Wang J, Zhu L S, et al. Physiological and biochemical responses of wheat (Triticum aestivum L.) seedlings to three imidazolium-based ionic liquids in soil[J]. Chemosphere, 2018, 191:81-88
    Yu F, Zhou Y M, Cao K X, et al. Phytotoxicity of ionic liquids with different structures on wheat seedlings and evaluation of their toxicity attenuation at the presence of modified biochar by adsorption effect[J]. Chemosphere, 2018, 196:331-338
    Chen Z L, Zhou Q, Guan W, et al. Effects of imidazolium-based ionic liquids with different anions on wheat seedlings[J]. Chemosphere, 2018, 194:20-27
    Liu H J, Zhang S X, Zhang X Q, et al. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings[J]. Journal of Hazardous Materials, 2015, 286:440-448
    Habibul N, Ilmurat M, Habibul Z, et al. Uptake and accumulation of imidazolium ionic liquids in rice seedlings:Impacts of alkyl chain length[J]. Chemosphere, 2020, 242:125228
    Liu T, Zhu L S, Wang J H, et al. Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity[J]. Chemosphere, 2016, 145:269-276
    Xu Y Q, Wang J H, Du Z K, et al. Toxicity evaluation of three imidazolium-based ionic liquids ([C6mim]R) on Vicia faba seedlings using an integrated biomarker response (IBR) index[J]. Chemosphere, 2020, 240:124919
    杨芬芬, 孟洪, 李春喜, 等. 离子液体对三种农作物发芽和生长的毒性研究[J]. 环境工程学报, 2009, 3(4):751-754

    Yang F F, Meng H, Li C X, et al. Ecotoxicity of ionic liquids on the germination and growth of three seeds[J]. Chinese Journal of Environmental Engineering, 2009, 3(4):751-754(in Chinese)

    Sakina, Khan A S, Nasrullah A, et al. Effect of imidazolium's ionic liquids with different anions and alkyl chain length on phytotoxicity and biochemical analysis of maize seedling[J]. Journal of Molecular Liquids, 2021, 321:114491
    Biczak R, Pawƚowska B, Telesiński A, et al. The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings[J]. Chemosphere, 2016, 165:519-528
    Biczak R,Śnioszek M, Telesiński A, et al. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions[J]. Ecotoxicology and Environmental Safety, 2017, 139:463-471
    Tot A, Vraneš M, Maksimović I, et al. The effect of imidazolium based ionic liquids on wheat and barley germination and growth:Influence of length and oxygen functionalization of alkyl side chain[J]. Ecotoxicology and Environmental Safety, 2018, 147:401-406
    Habibul N, Hu Y Y, Hu Y, et al. Alkyl chain length affecting uptake of imidazolium based ionic liquids by ryegrass (Lolium perenne L.)[J]. Journal of Hazardous Materials, 2021, 401:123376
    Chu L L, Kang X, Li D P, et al. The toxicological mechanism of two typical imidazole ionic liquids in textile industry on Isatis tinctoria[J]. Chemosphere, 2021, 275:130042
    Jin M K, Wang H, Liu H J, et al. Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana[J]. Environmental Pollution, 2020, 260:114013
    Liu H J, Xia Y L, Fan H Y, et al. Effect of imidazolium-based ionic liquids with varying carbon chain lengths on Arabidopsis thaliana:Response of growth and photosynthetic fluorescence parameters[J]. Journal of Hazardous Materials, 2018, 358:327-336
    Zhang L, Wang T Q, Zheng F X, et al. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings[J]. Ecotoxicology and Environmental Safety, 2016, 125:107-115
    Xia Y L, Liu D D, Dong Y, et al. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus[J]. Chemosphere, 2018, 195:437-447
    Liu D D, Liu H J, Wang S T, et al. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus:Growth inhibition, phototoxicity, and oxidative stress[J]. The Science of the Total Environment, 2018, 622-623:1572-1580
    Fan H Y, Jin M K, Wang H, et al. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure[J]. Environmental Pollution, 2019, 250:155-165
    Wang H, Fan H Y, Liu H J, et al. Oxidative stress response mechanism of Scenedesmus obliquus to ionic liquids with different number of methyl-substituents[J]. Journal of Hazardous Materials, 2020, 399:122847
    Liu H J, Wu J, Zhang X Q, et al. Enantioselective oxidative stress caused by chiral ionic liquids forms of 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus[J]. The Science of the Total Environment, 2017, 595:819-827
    Chen H, Zou Y Q, Zhang L J, et al. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae[J]. Aquatic Toxicology, 2014, 154:114-120
    Fan H Y, Liu H J, Dong Y, et al. Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus:Role of cations and anions[J]. The Science of the Total Environment, 2019, 651(Pt 1):570-579
    Deng Y, Beadham I, Ren H Y, et al. A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry[J]. Ecotoxicology and Environmental Safety, 2020, 194:110392
    Quraishi K S, Bustam M A, Krishnan S, et al. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris & Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR)[J]. Chemosphere, 2017, 184:642-651
    Chen B, Dong J W, Li B, et al. Using a freshwater green alga Chlorella pyrenoidosa to evaluate the biotoxicity of ionic liquids with different cations and anions[J]. Ecotoxicology and Environmental Safety, 2020, 198:110604
    Jin M K, Wang H, Li Z, et al. Physiological responses of Chlorella pyrenoidosa to 1-hexyl-3-methyl chloride ionic liquids with different cations[J]. Science of the Total Environment, 2019, 685:315-323
    Cho C W, Jeon Y C, Pham T P T, et al. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2008, 71(1):166-171
    Chen B, Xue C Y, Amoah P K, et al. Impacts of four ionic liquids exposure on a marine diatom Phaeodactylum tricornutum at physiological and biochemical levels[J]. The Science of the Total Environment, 2019, 665:492-501
    Deng X Y, Li D, Wang L, et al. Potential toxicity of ionic liquid ([C12mim]BF4) on the growth and biochemical characteristics of a marine diatom Phaeodactylum tricornutum[J]. The Science of the Total Environment, 2017, 586:675-684
    Evans-White M A, Lamberti G A. Direct and indirect effects of a potential aquatic contaminant on grazer-algae interactions[J]. Environmental Toxicology and Chemistry, 2009, 28(2):418-426
    张文林, 唐聪, 闫佳伟, 等. 离子液体的生物毒性及降解性研究[J]. 江苏农业科学, 2019, 47(5):204-208

    Zhang W L, Tang C, Yan J W, et al. Study on biotoxicity and biodegradation of ionic liquids[J]. Jiangsu Agricultural Sciences, 2019, 47(5):204-208(in Chinese)

    Zhang C, Zhu L S, Wang J H, et al. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 140:235-240
    Li W X, Zhu L, Du Z K, et al. Acute toxicity, oxidative stress and DNA damage of three task-specific ionic liquids ([C2NH2MIm]BF4,[MOEMIm]BF4, and[HOEMIm]BF4) to zebrafish (Danio rerio)[J]. Chemosphere, 2020, 249:126119
    Zhang C, Du Z K, Wang J H, et al. Exposed zebrafish (Danio rerio) to imidazolium-based ionic liquids with different anions and alkyl-chain lengths[J]. Chemosphere, 2018, 203:381-386
    Younes N, Salem R, Al-Asmakh M, et al. Toxicity evaluation of selected ionic liquid compounds on embryonic development of zebrafish[J]. Ecotoxicology and Environmental Safety, 2018, 161:17-24
    Chang X L, Liu P, Feng J C, et al. Impact of chronic exposure to the ionic liquid ([C8mim] [PF6]) on intestinal physical barrier, immunological barrier and gut microbiota in common carp (Cyprinus carpio L.)[J]. Environmental Research, 2020, 189:109919
    Ma J G, Li X X, Cui M K, et al. Negative impact of the imidazolium-based ionic liquid[C8mim]Br on silver carp (Hypophthalmichthys molitrix):Long-term and low-level exposure[J]. Chemosphere, 2018, 213:358-367
    Thamke V R, Kodam K M. Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1[J]. Journal of Hazardous Materials, 2016, 320:408-416
    Amde M, Liu J F, Pang L. Environmental application, fate, effects, and concerns of ionic liquids:A review[J]. Environmental Science & Technology, 2015, 49(21):12611-12627
    杜启艳, 王亚星, 南平, 等. 离子液体[C8mim]Cl对泥鳅肝脏的氧化损伤效应[J]. 河南师范大学学报(自然科学版), 2019, 47(1):88-92 Du Q Y, Wang Y X, Nan P, et al. Oxidative damage effect of ionic liquids[C8mim]Cl on the liver of loach[J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(1):88-92(in Chinese)
    燕帅国, 南平, 杜启艳, 等. 离子液体[C16mim]Cl对泥鳅的毒性效应[J]. 生态毒理学报, 2013, 8(1):92-96

    Yan S G, Nan P, Du Q Y, et al. Toxicity of[C16mim]Cl to loach (Misgurnus anguillicaudatus)[J]. Asian Journal of Ecotoxicology, 2013, 8(1):92-96(in Chinese)

    Young G R, Abdelghany T M, Leitch A C, et al. Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids[J]. PLoS One, 2020, 15(3):e0229745
    Leitch A C, Abdelghany T M, Charlton A, et al. Renal injury and hepatic effects from the methylimidazolium ionic liquid M8OI in mouse[J]. Ecotoxicology and Environmental Safety, 2020, 202:110902
    Ma L, Andoh V, Liu H Y, et al. Biological effects of gold nanoclusters are evaluated by using silkworm as a model animal[J]. Journal of Materials Science, 2019, 54(6):4997-5007
    Gao K, Li B, Chen R Z, et al. A feasibility study of using silkworm larvae as a novel in vivo model to evaluate the biotoxicity of ionic liquids[J]. Ecotoxicology and Environmental Safety, 2021, 209:111759
    Gao K, Yang M T, Li B, et al. Molecular response mechanisms of silkworm (Bombyx mori L.) to the toxicity of 1-octyl-3-methylimidazole chloride based on transcriptome analysis of midguts and silk glands[J]. Ecotoxicology and Environmental Safety, 2021, 227:112915
    Shao Y T, Wang J H, Wang J, et al. Oxidative stress and genotoxic effects in earthworms induced by five imidazolium bromide ionic liquids with different alkyl chains[J]. Chemosphere, 2019, 227:570-579
    张淑敏. 离子液体[C4mim]BF4、[C8mim]BF4和[C8mim]Br对蚯蚓的氧化胁迫及DNA损伤[D]. 泰安:山东农业大学, 2014:20-60 Zhang S M. Oxidative stress and DNA damage induced by ionic liquids[C4mim]BF4

    ,[C8mim]BF4 and[C8mim]Br exposure in earthworm exposure in earthworm[D]. Taian:Shandong Agricultural University, 2014:20-60(in Chinese)

    Guo Y Y, Liu T, Zhang J, et al. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida)[J]. Environmental Toxicology and Chemistry, 2016, 35(2):411-418
    Shao Y T, Wang J, Du Z K, et al. Toxicity of 1-alkyl-3-methyl imidazolium nitrate ionic liquids to earthworms:The effects of carbon chains of different lengths[J]. Chemosphere, 2018, 206:302-309
    You L J, Wang Z, Kang Y L, et al. Experimental investigation of porosity and permeability change caused by salting out in tight sandstone gas reservoirs[J]. Journal of Natural Gas Geoscience, 2018, 3(6):347-352
    Zhang C, Zhang S, Zhu L S, et al. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna[J]. Environmental Pollution, 2017, 229:887-895
    Yu M, Liu C H, Zhao H H, et al. The effects of 1-hexyl-3-methylimidazolium bromide on embryonic development and reproduction in Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2020, 190:110137
    Siciliano A, Russo D, Spasiano D, et al. Chronic toxicity of treated and untreated aqueous solutions containing imidazole-based ionic liquids and their oxydized by-products[J]. Ecotoxicology and Environmental Safety, 2019, 180:466-472
    Cui Y H, Shi Q S, Zhang D D, et al. Detoxification of ionic liquids using glutathione, cysteine, and NADH:Toxicity evaluation by Tetrahymena pyriformis[J]. Environmental Pollution, 2021, 276:116725
    Peng Y, Tong Z H, Chong H J, et al. Toxic effects of prolonged exposure to[C14mim]Br on Caenorhabditis elegans[J]. Chemosphere, 2018, 208:226-232
    Zhu C J, Peng Y, Tong Z H, et al. Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans[J]. Chemosphere, 2016, 157:65-70
    Thamke V R, Tapase S R, Kodam K M. Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems[J]. Water Research, 2017, 125:237-248
    Zanoni B V, Brasil Romão G, Andrade R S, et al. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells:in vitro and in silico studies[J]. Toxicology Research, 2019, 8(3):447-458
    Jing B X, Lan N, Qiu J, et al. Interaction of ionic liquids with a lipid bilayer:A biophysical study of ionic liquid cytotoxicity[J]. The Journal of Physical Chemistry B, 2016, 120(10):2781-2789
    Abdelghany T M, Leitch A C, Nevjestić I, et al. Emerging risk from "environmentally-friendly" solvents:Interaction of methylimidazolium ionic liquids with the mitochondrial electron transport chain is a key initiation event in their mammalian toxicity[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2020, 145:111593
    Hwang J H, Park H, Choi D W, et al. Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2018, 46:194-202
    McLaughlin M, Gilea M A, Earle M J, et al. Characterization of ionic liquid cytotoxicity mechanisms in human keratinocytes compared with conventional biocides[J]. Chemosphere, 2021, 270:129432
    Wan R Y, Xia X H, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to HepG2 cells[J]. Toxicology in Vitro, 2018, 52:1-7
    Xia X H, Wan R Y, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to Hela cells[J]. Ecotoxicology and Environmental Safety, 2018, 162:408-414
    Hu L X, Xiong Q, Shi W J, et al. New insight into the negative impact of imidazolium-based ionic liquid[C10mim]Cl on Hela cells:From membrane damage to biochemical alterations[J]. Ecotoxicology and Environmental Safety, 2021, 208:111629
    Ma J G, Li X Y. Insight into the negative impact of ionic liquid:A cytotoxicity mechanism of 1-methyl-3-octylimidazolium bromide[J]. Environmental Pollution, 2018, 242:1337-1345
    Bakshi K, Mitra S, Sharma V K, et al. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane[J]. Biochimica et Biophysica Acta Biomembranes, 2020, 1862(2):183103
    Leitch A C, Abdelghany T M, Probert P M, et al. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2020, 136:111069
    Borkowski A, Ƚawniczak Ƚ, Cƚapa T, et al. Different antibacterial activity of novel theophylline-based ionic liquids-Growth kinetic and cytotoxicity studies[J]. Ecotoxicology and Environmental Safety, 2016, 130:54-64
    Yu J, Zhang S S, Dai Y T, et al. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids[J]. Journal of Hazardous Materials, 2016, 307:73-81
    Wu S G, Zeng L B, Wang C Y, et al. Assessment of the cytotoxicity of ionic liquids on Spodoptera frugiperda 9(Sf-9) cell lines via in vitro assays[J]. Journal of Hazardous Materials, 2018, 348:1-9
    Pérez S A, Montalbán M G, Carissimi G, et al. In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines[J]. Journal of Hazardous Materials, 2020, 385:121513
    Liwarska-Bizukojc E. Influence of imidazolium ionic liquids on dehydrogenase activity of activated sludge microorganisms[J]. Water, Air, & Soil Pollution, 2011, 221(1):327-335
    Fan Y C, Dong X, Yan L L, et al. Evaluation of the toxicity of ionic liquids on trypsin:A mechanism study[J]. Chemosphere, 2016, 148:241-247
    Fan Y C, Dong X, Li X J, et al. Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2016, 159:128-133
    Dong X, Fan Y C, Zhang H, et al. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity[J]. International Journal of Biological Macromolecules, 2016, 86:155-161
    Arning J, Stolte S, B schen A, et al. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase[J]. Green Chemistry, 2008, 10(1):47-58
    Zhang H C, Shi C Y, Yang H H, et al. Genotoxicity evaluation of ionic liquid 1-octyl-3-methylimidazolium bromide in freshwater planarian Dugesia japonica using RAPD assay[J]. Ecotoxicology and Environmental Safety, 2016, 134 P1:17-22
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 89.7 %HTML全文: 89.7 %摘要: 8.1 %摘要: 8.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 93.7 %其他: 93.7 %XX: 2.7 %XX: 2.7 %东莞: 0.1 %东莞: 0.1 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %兴安盟: 0.0 %兴安盟: 0.0 %内网IP: 0.0 %内网IP: 0.0 %包头: 0.0 %包头: 0.0 %北京: 1.5 %北京: 1.5 %南京: 0.1 %南京: 0.1 %厦门: 0.0 %厦门: 0.0 %咸宁: 0.0 %咸宁: 0.0 %唐山: 0.0 %唐山: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.1 %天津: 0.1 %宜宾: 0.0 %宜宾: 0.0 %宣城: 0.0 %宣城: 0.0 %广州: 0.1 %广州: 0.1 %昆明: 0.0 %昆明: 0.0 %沈阳: 0.0 %沈阳: 0.0 %河池: 0.0 %河池: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %盐城: 0.0 %盐城: 0.0 %绥化: 0.0 %绥化: 0.0 %芜湖: 0.0 %芜湖: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %西宁: 0.0 %西宁: 0.0 %西安: 0.1 %西安: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.0 %重庆: 0.0 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.0 %长沙: 0.0 %阳泉: 0.0 %阳泉: 0.0 %驻马店: 0.0 %驻马店: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他XX东莞保定六安兴安盟内网IP包头北京南京厦门咸宁唐山大连天津宜宾宣城广州昆明沈阳河池深圳温州盐城绥化芜湖葫芦岛西宁西安贵阳运城郑州重庆银川长春长沙阳泉驻马店龙岩Highcharts.com
计量
  • 文章访问数:  2393
  • HTML全文浏览数:  2393
  • PDF下载数:  128
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-24
褚玲珑, 赵晓祥. 离子液体生态毒理研究进展[J]. 生态毒理学报, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002
引用本文: 褚玲珑, 赵晓祥. 离子液体生态毒理研究进展[J]. 生态毒理学报, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002
Chu Linglong, Zhao Xiaoxiang. Advances in Ecotoxicology of Ionic Liquids[J]. Asian journal of ecotoxicology, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002
Citation: Chu Linglong, Zhao Xiaoxiang. Advances in Ecotoxicology of Ionic Liquids[J]. Asian journal of ecotoxicology, 2022, 17(6): 118-134. doi: 10.7524/AJE.1673-5897.20210924002

离子液体生态毒理研究进展

    通讯作者: 赵晓祥, E-mail: zxx@dhu.edu.cn
    作者简介: 褚玲珑(1996-),女,博士研究生,研究方向为生态毒理学,E-mail:2191565@mail.dhu.edu.cn
  • 东华大学环境科学与工程学院,上海 201620
基金项目:

上海市生态环境局科研项目(沪环科2021-10)

摘要: 近年来,离子液体在化工领域中的应用越来越广泛,为了让使用者更加了解“绿色溶剂”——离子液体,从而更加安全合理地使用它,本文简单介绍了离子液体的结构与性质,阐述了离子液体对微生物(费氏弧菌等)、植物(小麦、水稻、蚕豆、拟南芥和藻类等)、动物(鱼类、小鼠、蚯蚓和蚕等)、细胞(正常角质形成细胞HaCaT、肝细胞HepG、人宫颈癌细胞Hela和草地贪夜蛾细胞等)、酶(脱氢酶、胰蛋白酶等)和脱氧核糖核酸(deoxyribonucleic acid, DNA)的毒性效应,重点分析了离子液体对植物和动物的毒理机制,并对未来离子液体的毒理研究作出展望。

English Abstract

参考文献 (126)

返回顶部

目录

/

返回文章
返回