离子液体生态毒理研究进展
Advances in Ecotoxicology of Ionic Liquids
-
摘要: 近年来,离子液体在化工领域中的应用越来越广泛,为了让使用者更加了解“绿色溶剂”——离子液体,从而更加安全合理地使用它,本文简单介绍了离子液体的结构与性质,阐述了离子液体对微生物(费氏弧菌等)、植物(小麦、水稻、蚕豆、拟南芥和藻类等)、动物(鱼类、小鼠、蚯蚓和蚕等)、细胞(正常角质形成细胞HaCaT、肝细胞HepG、人宫颈癌细胞Hela和草地贪夜蛾细胞等)、酶(脱氢酶、胰蛋白酶等)和脱氧核糖核酸(deoxyribonucleic acid, DNA)的毒性效应,重点分析了离子液体对植物和动物的毒理机制,并对未来离子液体的毒理研究作出展望。Abstract: Ionic liquids have been used in chemical industry widely in recent years. In order to let users know more about the “green solvent”—ionic liquids, so as to use it more safely and reasonably, this study briefly introduces the structure and properties of ionic liquids, and expounds the toxic effects of ionic liquids on microbe (Vibrio fischeri etc.), plant (wheat, rice, beans, Arabidopsis, algae, etc.), animals (fish, mice, worms, silkworm, etc.), cells (normal cutin formation HaCaT cells, liver HepG cells and human cervical cancer Hela cells, Spodoptera frugiperda cells, etc.), enzyme (dehydrogenase, trypsin, etc.), and the deoxyribonucleic acid (DNA). Further, the toxicological mechanism of ionic liquids on plants and animals was summarized, and the future toxicological research of ionic liquids was prospected.
-
Key words:
- ionic liquid /
- plants /
- animal /
- microbes /
- cells /
- comprehensive toxicity /
- ecological risk
-
-
Paternò A, D'Anna F, Musumarra G, et al. A multivariate insight into ionic liquids toxicities[J]. RSC Advances, 2014, 4(46):23985-24000 Casal-Dujat L, Rodrigues M, Yagüe A, et al. Gemini imidazolium amphiphiles for the synthesis, stabilization, and drug delivery from gold nanoparticles[J]. Langmuir, 2012, 28(5):2368-2381 Sheldon R A. Green solvents for sustainable organic synthesis:State of the art[J]. Green Chemistry, 2005, 7(5):267-278 李永祥, 张玲玲, 刘雁红, 等. 离子液体在食品领域中的应用研究进展[J]. 食品工业科技, 2016, 37(5):394-400 Li Y X, Zhang L L, Liu Y H, et al. Advance in research and application of ionic liquids in food science[J]. Science and Technology of Food Industry, 2016, 37(5):394-400(in Chinese)
Ye Q, Gao T T, Wan F, et al. Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications[J]. Journal of Materials Chemistry, 2012, 22(26):13123-13131 Xiao Y, Malhotra S V. Friedel-crafts acylation reactions in pyridinium based ionic liquids[J]. Journal of Organometallic Chemistry, 2005, 690(15):3609-3613 Stumpf S, Billard I, Panak P J, et al. Differences of Eu(Ⅲ) and Cm(Ⅲ) chemistry in ionic liquids:Investigations by TRLFS[J]. Dalton Transactions, 2007(2):240-248 Mrozik W, Jungnickel C, Ciborowski T, et al. Predicting mobility of alkylimidazolium ionic liquids in soils[J]. Journal of Soils and Sediments, 2009, 9(3):237-245 Magina S, Barros-Timmons A, Ventura S P M, et al. Evaluating the hazardous impact of ionic liquids-Challenges and opportunities[J]. Journal of Hazardous Materials, 2021, 412:125215 Holbrey J D, Seddon K R. Ionic liquids[J]. Clean Products and Processes, 1999, 1(4):223-236 Ventura S P, Santos L D, Saraiva J A, et al. Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B[J]. World Journal of Microbiology & Biotechnology, 2012, 28(6):2303-2310 Ventura S P, de Barros R L, Sintra T, et al. Simple screening method to identify toxic/non-toxic ionic liquids:Agar diffusion test adaptation[J]. Ecotoxicology and Environmental Safety, 2012, 83:55-62 Ventura S P, Marques C S, Rosatella A A, et al. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria[J]. Ecotoxicology and Environmental Safety, 2012, 76(2):162-168 Zhang L M, Gellerstedt G, Ralph J, et al. NMR studies on the occurrence of spirodienone structures in lignins[J]. Journal of Wood Chemistry and Technology, 2006, 26(1):65-79 Zhang S J, Sun N, He X Z, et al. Physical properties of ionic liquids:Database and evaluation[J]. Journal of Physical and Chemical Reference Data, 2006, 35(4):1475-1517 Angell C A, Byrne N, Belieres J P. Parallel developments in aprotic and protic ionic liquids:Physical chemistry and applications[J]. Accounts of Chemical Research, 2007, 40(11):1228-1236 Hayes R, Warr G G, Atkin R. Structure and nanostructure in ionic liquids[J]. Chemical Reviews, 2015, 115(13):6357-6426 Mu T, Han B. Structures and Thermodynamic Properties of Ionic Liquids[M]//Structures and Interactions of Ionic Liquids, Structure and Bonding. Springer-Verlag, Berlin and Heidelberg, 2014:107-139 Hu Y F, Peng X M. Effect of the structures of ionic liquids on their physical chemical properties[J]. Structure and Bonding, 2014, 151(16):141-174 Fredlake C, Crosthwaite J, Hert D, et al. Thermophysical properties of imidazolium-based ionic liquids[J]. Chemical Engineering Journal, 2004, 49:954-964 Chen Y, Mu T C. Thermal Stability of Ionic Liquids[M]//Encyclopedia of Ionic Liquids. Singapore:Springer Singapore, 2019:1-13 Maton C, de Vos N, Stevens C V. Ionic liquid thermal stabilities:Decomposition mechanisms and analysis tools[J]. Chemical Society Reviews, 2013, 42(13):5963-5977 Ngo H L, Karen L C, Liesl H, et al. Thermal properties of imidazolium ionic liquids[J]. Thermochimica Acta, 2000, 357-358:97-102 Okoturo O O, Vandernoot T J. Temperature dependence of viscosity for room temperature ionic liquids[J]. Journal of Electroanalytical Chemistry, 2004, 568:167-181 Bhattacharjee A, Lopes D S, Mara F, et al. Thermophysical properties of phosphonium-based ionic liquids[J]. Fluid Phase Equilibria, 2015, 400:103-113 Freire M G, Teles A R R, Rocha M A A, et al. Thermophysical characterization of ionic liquids able to dissolve biomass[J]. Journal of Chemical & Engineering Data, 2011, 56(12):4813-4822 Zhou H C, Chen L F, Wei Z, et al. Effect of ionic composition on physicochemical properties of mono-ether functional ionic liquids[J]. Molecules, 2019, 24(17):3112 Fang D W, Xia M C, Zuo J T, et al. Physicochemical properties of ionic liquids[Cnmim] [SbF6](n=4,5,6)[J]. The Journal of Chemical Thermodynamics, 2019, 131:360-368 Hachicha R, Zarrougui R, Messaoudi S, et al. Physicochemical properties and theoretical studies of novel fragile ionic liquids based on N-allyl-N,N-dimethylethylammonium cation[J]. Journal of Molecular Liquids, 2019, 284:522-535 Wang Z Y, Zhang J C, Lu B B, et al. Novel bio-renewable matrinium-based ionic liquids derived from Chinese herb medicine:Synthesis, physicochemical properties and biological activity[J]. Journal of Molecular Liquids, 2019, 296:111822 Javadzadeh Y, Hamedeyaz S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease[M]//Trends in Helicobacter Pylori Infection. InTech, 2014:303-319 Sydow M, Owsianiak M, Framski G, et al. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids:Effects of toxicity and biodegradation[J]. Ecotoxicology and Environmental Safety, 2018, 147:157-164 Sun X, Zhu L S, Wang J H, et al. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity[J]. Ecotoxicology and Environmental Safety, 2017, 135:201-208 Montalbán M G, Villora G, Licence P. Ecotoxicity assessment of dicationic versus monocationic ionic liquids as a more environmentally friendly alternative[J]. Ecotoxicology and Environmental Safety, 2018, 150:129-135 Diaz E, Monsalvo V M, Lopez J, et al. Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays[J]. Ecotoxicology and Environmental Safety, 2018, 162:29-34 Ƚawniczak Ƚ, Syguda A, Borkowski A, et al. Influence of oligomeric herbicidal ionic liquids with MCPA and dicamba anions on the community structure of autochthonic bacteria present in agricultural soil[J]. The Science of the Total Environment, 2016, 563-564:247-255 Piotrowska A, Syguda A, Wyrwas B, et al. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida[J]. Chemosphere, 2017, 167:114-119 Zhang C, Du Z K, Li B, et al. Evaluating toxicity of 1-octyl-3-methylimidazolium hexafluorophosphate to microorganisms in soil[J]. Chemosphere, 2018, 210:762-768 Cheng C, Ma J C, Wang J H, et al. Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms[J]. Environmental Pollution, 2019, 255(Pt 2):113321 Mena I F, Diaz E, Palomar J, et al. Cation and anion effect on the biodegradability and toxicity of imidazolium- and choline-based ionic liquids[J]. Chemosphere, 2020, 240:124947 Delgado-Mellado N, Ayuso M, Villar-Chavero M M, et al. Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes[J]. SN Applied Sciences, 2019, 1(8):1-9 Sintra T E, Nasirpour M, Siopa F, et al. Ecotoxicological evaluation of magnetic ionic liquids[J]. Ecotoxicology and Environmental Safety, 2017, 143:315-321 Parajó J J, Macário I P E, Gaetano Y D, et al. Glycine-betaine-derived ionic liquids:Synthesis, characterization and ecotoxicological evaluation[J]. Ecotoxicology and Environmental Safety, 2019, 184:109580 Pal S, Sar A, Dam B. Moderate halophilic bacteria, but not extreme halophilic archaea can alleviate the toxicity of short-alkyl side chain imidazolium-based ionic liquids[J]. Ecotoxicology and Environmental Safety, 2019, 184:109634 You Y, Yi N. Toxicity and antimicrobial activities of ionic liquids with halogen anion[J]. Journal of Environmental Protection, 2011, 2(3):298-303 Xu Y Q, Wang J, Zhu L S, et al. Physiological and biochemical responses of wheat (Triticum aestivum L.) seedlings to three imidazolium-based ionic liquids in soil[J]. Chemosphere, 2018, 191:81-88 Yu F, Zhou Y M, Cao K X, et al. Phytotoxicity of ionic liquids with different structures on wheat seedlings and evaluation of their toxicity attenuation at the presence of modified biochar by adsorption effect[J]. Chemosphere, 2018, 196:331-338 Chen Z L, Zhou Q, Guan W, et al. Effects of imidazolium-based ionic liquids with different anions on wheat seedlings[J]. Chemosphere, 2018, 194:20-27 Liu H J, Zhang S X, Zhang X Q, et al. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings[J]. Journal of Hazardous Materials, 2015, 286:440-448 Habibul N, Ilmurat M, Habibul Z, et al. Uptake and accumulation of imidazolium ionic liquids in rice seedlings:Impacts of alkyl chain length[J]. Chemosphere, 2020, 242:125228 Liu T, Zhu L S, Wang J H, et al. Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity[J]. Chemosphere, 2016, 145:269-276 Xu Y Q, Wang J H, Du Z K, et al. Toxicity evaluation of three imidazolium-based ionic liquids ([C6mim]R) on Vicia faba seedlings using an integrated biomarker response (IBR) index[J]. Chemosphere, 2020, 240:124919 杨芬芬, 孟洪, 李春喜, 等. 离子液体对三种农作物发芽和生长的毒性研究[J]. 环境工程学报, 2009, 3(4):751-754 Yang F F, Meng H, Li C X, et al. Ecotoxicity of ionic liquids on the germination and growth of three seeds[J]. Chinese Journal of Environmental Engineering, 2009, 3(4):751-754(in Chinese)
Sakina, Khan A S, Nasrullah A, et al. Effect of imidazolium's ionic liquids with different anions and alkyl chain length on phytotoxicity and biochemical analysis of maize seedling[J]. Journal of Molecular Liquids, 2021, 321:114491 Biczak R, Pawƚowska B, Telesiński A, et al. The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings[J]. Chemosphere, 2016, 165:519-528 Biczak R,Śnioszek M, Telesiński A, et al. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions[J]. Ecotoxicology and Environmental Safety, 2017, 139:463-471 Tot A, Vraneš M, Maksimović I, et al. The effect of imidazolium based ionic liquids on wheat and barley germination and growth:Influence of length and oxygen functionalization of alkyl side chain[J]. Ecotoxicology and Environmental Safety, 2018, 147:401-406 Habibul N, Hu Y Y, Hu Y, et al. Alkyl chain length affecting uptake of imidazolium based ionic liquids by ryegrass (Lolium perenne L.)[J]. Journal of Hazardous Materials, 2021, 401:123376 Chu L L, Kang X, Li D P, et al. The toxicological mechanism of two typical imidazole ionic liquids in textile industry on Isatis tinctoria[J]. Chemosphere, 2021, 275:130042 Jin M K, Wang H, Liu H J, et al. Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana[J]. Environmental Pollution, 2020, 260:114013 Liu H J, Xia Y L, Fan H Y, et al. Effect of imidazolium-based ionic liquids with varying carbon chain lengths on Arabidopsis thaliana:Response of growth and photosynthetic fluorescence parameters[J]. Journal of Hazardous Materials, 2018, 358:327-336 Zhang L, Wang T Q, Zheng F X, et al. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings[J]. Ecotoxicology and Environmental Safety, 2016, 125:107-115 Xia Y L, Liu D D, Dong Y, et al. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus[J]. Chemosphere, 2018, 195:437-447 Liu D D, Liu H J, Wang S T, et al. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus:Growth inhibition, phototoxicity, and oxidative stress[J]. The Science of the Total Environment, 2018, 622-623:1572-1580 Fan H Y, Jin M K, Wang H, et al. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure[J]. Environmental Pollution, 2019, 250:155-165 Wang H, Fan H Y, Liu H J, et al. Oxidative stress response mechanism of Scenedesmus obliquus to ionic liquids with different number of methyl-substituents[J]. Journal of Hazardous Materials, 2020, 399:122847 Liu H J, Wu J, Zhang X Q, et al. Enantioselective oxidative stress caused by chiral ionic liquids forms of 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus[J]. The Science of the Total Environment, 2017, 595:819-827 Chen H, Zou Y Q, Zhang L J, et al. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae[J]. Aquatic Toxicology, 2014, 154:114-120 Fan H Y, Liu H J, Dong Y, et al. Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus:Role of cations and anions[J]. The Science of the Total Environment, 2019, 651(Pt 1):570-579 Deng Y, Beadham I, Ren H Y, et al. A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry[J]. Ecotoxicology and Environmental Safety, 2020, 194:110392 Quraishi K S, Bustam M A, Krishnan S, et al. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris & Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR)[J]. Chemosphere, 2017, 184:642-651 Chen B, Dong J W, Li B, et al. Using a freshwater green alga Chlorella pyrenoidosa to evaluate the biotoxicity of ionic liquids with different cations and anions[J]. Ecotoxicology and Environmental Safety, 2020, 198:110604 Jin M K, Wang H, Li Z, et al. Physiological responses of Chlorella pyrenoidosa to 1-hexyl-3-methyl chloride ionic liquids with different cations[J]. Science of the Total Environment, 2019, 685:315-323 Cho C W, Jeon Y C, Pham T P T, et al. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2008, 71(1):166-171 Chen B, Xue C Y, Amoah P K, et al. Impacts of four ionic liquids exposure on a marine diatom Phaeodactylum tricornutum at physiological and biochemical levels[J]. The Science of the Total Environment, 2019, 665:492-501 Deng X Y, Li D, Wang L, et al. Potential toxicity of ionic liquid ([C12mim]BF4) on the growth and biochemical characteristics of a marine diatom Phaeodactylum tricornutum[J]. The Science of the Total Environment, 2017, 586:675-684 Evans-White M A, Lamberti G A. Direct and indirect effects of a potential aquatic contaminant on grazer-algae interactions[J]. Environmental Toxicology and Chemistry, 2009, 28(2):418-426 张文林, 唐聪, 闫佳伟, 等. 离子液体的生物毒性及降解性研究[J]. 江苏农业科学, 2019, 47(5):204-208 Zhang W L, Tang C, Yan J W, et al. Study on biotoxicity and biodegradation of ionic liquids[J]. Jiangsu Agricultural Sciences, 2019, 47(5):204-208(in Chinese)
Zhang C, Zhu L S, Wang J H, et al. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 140:235-240 Li W X, Zhu L, Du Z K, et al. Acute toxicity, oxidative stress and DNA damage of three task-specific ionic liquids ([C2NH2MIm]BF4,[MOEMIm]BF4, and[HOEMIm]BF4) to zebrafish (Danio rerio)[J]. Chemosphere, 2020, 249:126119 Zhang C, Du Z K, Wang J H, et al. Exposed zebrafish (Danio rerio) to imidazolium-based ionic liquids with different anions and alkyl-chain lengths[J]. Chemosphere, 2018, 203:381-386 Younes N, Salem R, Al-Asmakh M, et al. Toxicity evaluation of selected ionic liquid compounds on embryonic development of zebrafish[J]. Ecotoxicology and Environmental Safety, 2018, 161:17-24 Chang X L, Liu P, Feng J C, et al. Impact of chronic exposure to the ionic liquid ([C8mim] [PF6]) on intestinal physical barrier, immunological barrier and gut microbiota in common carp (Cyprinus carpio L.)[J]. Environmental Research, 2020, 189:109919 Ma J G, Li X X, Cui M K, et al. Negative impact of the imidazolium-based ionic liquid[C8mim]Br on silver carp (Hypophthalmichthys molitrix):Long-term and low-level exposure[J]. Chemosphere, 2018, 213:358-367 Thamke V R, Kodam K M. Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1[J]. Journal of Hazardous Materials, 2016, 320:408-416 Amde M, Liu J F, Pang L. Environmental application, fate, effects, and concerns of ionic liquids:A review[J]. Environmental Science & Technology, 2015, 49(21):12611-12627 杜启艳, 王亚星, 南平, 等. 离子液体[C8mim]Cl对泥鳅肝脏的氧化损伤效应[J]. 河南师范大学学报(自然科学版), 2019, 47(1):88-92 Du Q Y, Wang Y X, Nan P, et al. Oxidative damage effect of ionic liquids[C8mim]Cl on the liver of loach[J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(1):88-92(in Chinese) 燕帅国, 南平, 杜启艳, 等. 离子液体[C16mim]Cl对泥鳅的毒性效应[J]. 生态毒理学报, 2013, 8(1):92-96 Yan S G, Nan P, Du Q Y, et al. Toxicity of[C16mim]Cl to loach (Misgurnus anguillicaudatus)[J]. Asian Journal of Ecotoxicology, 2013, 8(1):92-96(in Chinese)
Young G R, Abdelghany T M, Leitch A C, et al. Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids[J]. PLoS One, 2020, 15(3):e0229745 Leitch A C, Abdelghany T M, Charlton A, et al. Renal injury and hepatic effects from the methylimidazolium ionic liquid M8OI in mouse[J]. Ecotoxicology and Environmental Safety, 2020, 202:110902 Ma L, Andoh V, Liu H Y, et al. Biological effects of gold nanoclusters are evaluated by using silkworm as a model animal[J]. Journal of Materials Science, 2019, 54(6):4997-5007 Gao K, Li B, Chen R Z, et al. A feasibility study of using silkworm larvae as a novel in vivo model to evaluate the biotoxicity of ionic liquids[J]. Ecotoxicology and Environmental Safety, 2021, 209:111759 Gao K, Yang M T, Li B, et al. Molecular response mechanisms of silkworm (Bombyx mori L.) to the toxicity of 1-octyl-3-methylimidazole chloride based on transcriptome analysis of midguts and silk glands[J]. Ecotoxicology and Environmental Safety, 2021, 227:112915 Shao Y T, Wang J H, Wang J, et al. Oxidative stress and genotoxic effects in earthworms induced by five imidazolium bromide ionic liquids with different alkyl chains[J]. Chemosphere, 2019, 227:570-579 张淑敏. 离子液体[C4mim]BF4、[C8mim]BF4和[C8mim]Br对蚯蚓的氧化胁迫及DNA损伤[D]. 泰安:山东农业大学, 2014:20-60 Zhang S M. Oxidative stress and DNA damage induced by ionic liquids[C4mim]BF4 ,[C8mim]BF4 and[C8mim]Br exposure in earthworm exposure in earthworm[D]. Taian:Shandong Agricultural University, 2014:20-60(in Chinese)
Guo Y Y, Liu T, Zhang J, et al. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida)[J]. Environmental Toxicology and Chemistry, 2016, 35(2):411-418 Shao Y T, Wang J, Du Z K, et al. Toxicity of 1-alkyl-3-methyl imidazolium nitrate ionic liquids to earthworms:The effects of carbon chains of different lengths[J]. Chemosphere, 2018, 206:302-309 You L J, Wang Z, Kang Y L, et al. Experimental investigation of porosity and permeability change caused by salting out in tight sandstone gas reservoirs[J]. Journal of Natural Gas Geoscience, 2018, 3(6):347-352 Zhang C, Zhang S, Zhu L S, et al. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna[J]. Environmental Pollution, 2017, 229:887-895 Yu M, Liu C H, Zhao H H, et al. The effects of 1-hexyl-3-methylimidazolium bromide on embryonic development and reproduction in Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2020, 190:110137 Siciliano A, Russo D, Spasiano D, et al. Chronic toxicity of treated and untreated aqueous solutions containing imidazole-based ionic liquids and their oxydized by-products[J]. Ecotoxicology and Environmental Safety, 2019, 180:466-472 Cui Y H, Shi Q S, Zhang D D, et al. Detoxification of ionic liquids using glutathione, cysteine, and NADH:Toxicity evaluation by Tetrahymena pyriformis[J]. Environmental Pollution, 2021, 276:116725 Peng Y, Tong Z H, Chong H J, et al. Toxic effects of prolonged exposure to[C14mim]Br on Caenorhabditis elegans[J]. Chemosphere, 2018, 208:226-232 Zhu C J, Peng Y, Tong Z H, et al. Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans[J]. Chemosphere, 2016, 157:65-70 Thamke V R, Tapase S R, Kodam K M. Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems[J]. Water Research, 2017, 125:237-248 Zanoni B V, Brasil Romão G, Andrade R S, et al. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells:in vitro and in silico studies[J]. Toxicology Research, 2019, 8(3):447-458 Jing B X, Lan N, Qiu J, et al. Interaction of ionic liquids with a lipid bilayer:A biophysical study of ionic liquid cytotoxicity[J]. The Journal of Physical Chemistry B, 2016, 120(10):2781-2789 Abdelghany T M, Leitch A C, Nevjestić I, et al. Emerging risk from "environmentally-friendly" solvents:Interaction of methylimidazolium ionic liquids with the mitochondrial electron transport chain is a key initiation event in their mammalian toxicity[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2020, 145:111593 Hwang J H, Park H, Choi D W, et al. Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2018, 46:194-202 McLaughlin M, Gilea M A, Earle M J, et al. Characterization of ionic liquid cytotoxicity mechanisms in human keratinocytes compared with conventional biocides[J]. Chemosphere, 2021, 270:129432 Wan R Y, Xia X H, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to HepG2 cells[J]. Toxicology in Vitro, 2018, 52:1-7 Xia X H, Wan R Y, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to Hela cells[J]. Ecotoxicology and Environmental Safety, 2018, 162:408-414 Hu L X, Xiong Q, Shi W J, et al. New insight into the negative impact of imidazolium-based ionic liquid[C10mim]Cl on Hela cells:From membrane damage to biochemical alterations[J]. Ecotoxicology and Environmental Safety, 2021, 208:111629 Ma J G, Li X Y. Insight into the negative impact of ionic liquid:A cytotoxicity mechanism of 1-methyl-3-octylimidazolium bromide[J]. Environmental Pollution, 2018, 242:1337-1345 Bakshi K, Mitra S, Sharma V K, et al. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane[J]. Biochimica et Biophysica Acta Biomembranes, 2020, 1862(2):183103 Leitch A C, Abdelghany T M, Probert P M, et al. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2020, 136:111069 Borkowski A, Ƚawniczak Ƚ, Cƚapa T, et al. Different antibacterial activity of novel theophylline-based ionic liquids-Growth kinetic and cytotoxicity studies[J]. Ecotoxicology and Environmental Safety, 2016, 130:54-64 Yu J, Zhang S S, Dai Y T, et al. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids[J]. Journal of Hazardous Materials, 2016, 307:73-81 Wu S G, Zeng L B, Wang C Y, et al. Assessment of the cytotoxicity of ionic liquids on Spodoptera frugiperda 9(Sf-9) cell lines via in vitro assays[J]. Journal of Hazardous Materials, 2018, 348:1-9 Pérez S A, Montalbán M G, Carissimi G, et al. In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines[J]. Journal of Hazardous Materials, 2020, 385:121513 Liwarska-Bizukojc E. Influence of imidazolium ionic liquids on dehydrogenase activity of activated sludge microorganisms[J]. Water, Air, & Soil Pollution, 2011, 221(1):327-335 Fan Y C, Dong X, Yan L L, et al. Evaluation of the toxicity of ionic liquids on trypsin:A mechanism study[J]. Chemosphere, 2016, 148:241-247 Fan Y C, Dong X, Li X J, et al. Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2016, 159:128-133 Dong X, Fan Y C, Zhang H, et al. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity[J]. International Journal of Biological Macromolecules, 2016, 86:155-161 Arning J, Stolte S, B schen A, et al. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase[J]. Green Chemistry, 2008, 10(1):47-58 Zhang H C, Shi C Y, Yang H H, et al. Genotoxicity evaluation of ionic liquid 1-octyl-3-methylimidazolium bromide in freshwater planarian Dugesia japonica using RAPD assay[J]. Ecotoxicology and Environmental Safety, 2016, 134 P1:17-22 -

计量
- 文章访问数: 2393
- HTML全文浏览数: 2393
- PDF下载数: 128
- 施引文献: 0