Paternò A, D'Anna F, Musumarra G, et al. A multivariate insight into ionic liquids toxicities[J]. RSC Advances, 2014, 4(46):23985-24000
|
Casal-Dujat L, Rodrigues M, Yagüe A, et al. Gemini imidazolium amphiphiles for the synthesis, stabilization, and drug delivery from gold nanoparticles[J]. Langmuir, 2012, 28(5):2368-2381
|
Sheldon R A. Green solvents for sustainable organic synthesis:State of the art[J]. Green Chemistry, 2005, 7(5):267-278
|
李永祥, 张玲玲, 刘雁红, 等. 离子液体在食品领域中的应用研究进展[J]. 食品工业科技, 2016, 37(5):394-400
Li Y X, Zhang L L, Liu Y H, et al. Advance in research and application of ionic liquids in food science[J]. Science and Technology of Food Industry, 2016, 37(5):394-400(in Chinese)
|
Ye Q, Gao T T, Wan F, et al. Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications[J]. Journal of Materials Chemistry, 2012, 22(26):13123-13131
|
Xiao Y, Malhotra S V. Friedel-crafts acylation reactions in pyridinium based ionic liquids[J]. Journal of Organometallic Chemistry, 2005, 690(15):3609-3613
|
Stumpf S, Billard I, Panak P J, et al. Differences of Eu(Ⅲ) and Cm(Ⅲ) chemistry in ionic liquids:Investigations by TRLFS[J]. Dalton Transactions, 2007(2):240-248
|
Mrozik W, Jungnickel C, Ciborowski T, et al. Predicting mobility of alkylimidazolium ionic liquids in soils[J]. Journal of Soils and Sediments, 2009, 9(3):237-245
|
Magina S, Barros-Timmons A, Ventura S P M, et al. Evaluating the hazardous impact of ionic liquids-Challenges and opportunities[J]. Journal of Hazardous Materials, 2021, 412:125215
|
Holbrey J D, Seddon K R. Ionic liquids[J]. Clean Products and Processes, 1999, 1(4):223-236
|
Ventura S P, Santos L D, Saraiva J A, et al. Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B[J]. World Journal of Microbiology & Biotechnology, 2012, 28(6):2303-2310
|
Ventura S P, de Barros R L, Sintra T, et al. Simple screening method to identify toxic/non-toxic ionic liquids:Agar diffusion test adaptation[J]. Ecotoxicology and Environmental Safety, 2012, 83:55-62
|
Ventura S P, Marques C S, Rosatella A A, et al. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria[J]. Ecotoxicology and Environmental Safety, 2012, 76(2):162-168
|
Zhang L M, Gellerstedt G, Ralph J, et al. NMR studies on the occurrence of spirodienone structures in lignins[J]. Journal of Wood Chemistry and Technology, 2006, 26(1):65-79
|
Zhang S J, Sun N, He X Z, et al. Physical properties of ionic liquids:Database and evaluation[J]. Journal of Physical and Chemical Reference Data, 2006, 35(4):1475-1517
|
Angell C A, Byrne N, Belieres J P. Parallel developments in aprotic and protic ionic liquids:Physical chemistry and applications[J]. Accounts of Chemical Research, 2007, 40(11):1228-1236
|
Hayes R, Warr G G, Atkin R. Structure and nanostructure in ionic liquids[J]. Chemical Reviews, 2015, 115(13):6357-6426
|
Mu T, Han B. Structures and Thermodynamic Properties of Ionic Liquids[M]//Structures and Interactions of Ionic Liquids, Structure and Bonding. Springer-Verlag, Berlin and Heidelberg, 2014:107-139
|
Hu Y F, Peng X M. Effect of the structures of ionic liquids on their physical chemical properties[J]. Structure and Bonding, 2014, 151(16):141-174
|
Fredlake C, Crosthwaite J, Hert D, et al. Thermophysical properties of imidazolium-based ionic liquids[J]. Chemical Engineering Journal, 2004, 49:954-964
|
Chen Y, Mu T C. Thermal Stability of Ionic Liquids[M]//Encyclopedia of Ionic Liquids. Singapore:Springer Singapore, 2019:1-13
|
Maton C, de Vos N, Stevens C V. Ionic liquid thermal stabilities:Decomposition mechanisms and analysis tools[J]. Chemical Society Reviews, 2013, 42(13):5963-5977
|
Ngo H L, Karen L C, Liesl H, et al. Thermal properties of imidazolium ionic liquids[J]. Thermochimica Acta, 2000, 357-358:97-102
|
Okoturo O O, Vandernoot T J. Temperature dependence of viscosity for room temperature ionic liquids[J]. Journal of Electroanalytical Chemistry, 2004, 568:167-181
|
Bhattacharjee A, Lopes D S, Mara F, et al. Thermophysical properties of phosphonium-based ionic liquids[J]. Fluid Phase Equilibria, 2015, 400:103-113
|
Freire M G, Teles A R R, Rocha M A A, et al. Thermophysical characterization of ionic liquids able to dissolve biomass[J]. Journal of Chemical & Engineering Data, 2011, 56(12):4813-4822
|
Zhou H C, Chen L F, Wei Z, et al. Effect of ionic composition on physicochemical properties of mono-ether functional ionic liquids[J]. Molecules, 2019, 24(17):3112
|
Fang D W, Xia M C, Zuo J T, et al. Physicochemical properties of ionic liquids[Cnmim] [SbF6](n=4,5,6)[J]. The Journal of Chemical Thermodynamics, 2019, 131:360-368
|
Hachicha R, Zarrougui R, Messaoudi S, et al. Physicochemical properties and theoretical studies of novel fragile ionic liquids based on N-allyl-N,N-dimethylethylammonium cation[J]. Journal of Molecular Liquids, 2019, 284:522-535
|
Wang Z Y, Zhang J C, Lu B B, et al. Novel bio-renewable matrinium-based ionic liquids derived from Chinese herb medicine:Synthesis, physicochemical properties and biological activity[J]. Journal of Molecular Liquids, 2019, 296:111822
|
Javadzadeh Y, Hamedeyaz S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease[M]//Trends in Helicobacter Pylori Infection. InTech, 2014:303-319
|
Sydow M, Owsianiak M, Framski G, et al. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids:Effects of toxicity and biodegradation[J]. Ecotoxicology and Environmental Safety, 2018, 147:157-164
|
Sun X, Zhu L S, Wang J H, et al. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity[J]. Ecotoxicology and Environmental Safety, 2017, 135:201-208
|
Montalbán M G, Villora G, Licence P. Ecotoxicity assessment of dicationic versus monocationic ionic liquids as a more environmentally friendly alternative[J]. Ecotoxicology and Environmental Safety, 2018, 150:129-135
|
Diaz E, Monsalvo V M, Lopez J, et al. Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays[J]. Ecotoxicology and Environmental Safety, 2018, 162:29-34
|
Ƚawniczak Ƚ, Syguda A, Borkowski A, et al. Influence of oligomeric herbicidal ionic liquids with MCPA and dicamba anions on the community structure of autochthonic bacteria present in agricultural soil[J]. The Science of the Total Environment, 2016, 563-564:247-255
|
Piotrowska A, Syguda A, Wyrwas B, et al. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida[J]. Chemosphere, 2017, 167:114-119
|
Zhang C, Du Z K, Li B, et al. Evaluating toxicity of 1-octyl-3-methylimidazolium hexafluorophosphate to microorganisms in soil[J]. Chemosphere, 2018, 210:762-768
|
Cheng C, Ma J C, Wang J H, et al. Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms[J]. Environmental Pollution, 2019, 255(Pt 2):113321
|
Mena I F, Diaz E, Palomar J, et al. Cation and anion effect on the biodegradability and toxicity of imidazolium- and choline-based ionic liquids[J]. Chemosphere, 2020, 240:124947
|
Delgado-Mellado N, Ayuso M, Villar-Chavero M M, et al. Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes[J]. SN Applied Sciences, 2019, 1(8):1-9
|
Sintra T E, Nasirpour M, Siopa F, et al. Ecotoxicological evaluation of magnetic ionic liquids[J]. Ecotoxicology and Environmental Safety, 2017, 143:315-321
|
Parajó J J, Macário I P E, Gaetano Y D, et al. Glycine-betaine-derived ionic liquids:Synthesis, characterization and ecotoxicological evaluation[J]. Ecotoxicology and Environmental Safety, 2019, 184:109580
|
Pal S, Sar A, Dam B. Moderate halophilic bacteria, but not extreme halophilic archaea can alleviate the toxicity of short-alkyl side chain imidazolium-based ionic liquids[J]. Ecotoxicology and Environmental Safety, 2019, 184:109634
|
You Y, Yi N. Toxicity and antimicrobial activities of ionic liquids with halogen anion[J]. Journal of Environmental Protection, 2011, 2(3):298-303
|
Xu Y Q, Wang J, Zhu L S, et al. Physiological and biochemical responses of wheat (Triticum aestivum L.) seedlings to three imidazolium-based ionic liquids in soil[J]. Chemosphere, 2018, 191:81-88
|
Yu F, Zhou Y M, Cao K X, et al. Phytotoxicity of ionic liquids with different structures on wheat seedlings and evaluation of their toxicity attenuation at the presence of modified biochar by adsorption effect[J]. Chemosphere, 2018, 196:331-338
|
Chen Z L, Zhou Q, Guan W, et al. Effects of imidazolium-based ionic liquids with different anions on wheat seedlings[J]. Chemosphere, 2018, 194:20-27
|
Liu H J, Zhang S X, Zhang X Q, et al. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings[J]. Journal of Hazardous Materials, 2015, 286:440-448
|
Habibul N, Ilmurat M, Habibul Z, et al. Uptake and accumulation of imidazolium ionic liquids in rice seedlings:Impacts of alkyl chain length[J]. Chemosphere, 2020, 242:125228
|
Liu T, Zhu L S, Wang J H, et al. Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity[J]. Chemosphere, 2016, 145:269-276
|
Xu Y Q, Wang J H, Du Z K, et al. Toxicity evaluation of three imidazolium-based ionic liquids ([C6mim]R) on Vicia faba seedlings using an integrated biomarker response (IBR) index[J]. Chemosphere, 2020, 240:124919
|
杨芬芬, 孟洪, 李春喜, 等. 离子液体对三种农作物发芽和生长的毒性研究[J]. 环境工程学报, 2009, 3(4):751-754
Yang F F, Meng H, Li C X, et al. Ecotoxicity of ionic liquids on the germination and growth of three seeds[J]. Chinese Journal of Environmental Engineering, 2009, 3(4):751-754(in Chinese)
|
Sakina, Khan A S, Nasrullah A, et al. Effect of imidazolium's ionic liquids with different anions and alkyl chain length on phytotoxicity and biochemical analysis of maize seedling[J]. Journal of Molecular Liquids, 2021, 321:114491
|
Biczak R, Pawƚowska B, Telesiński A, et al. The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings[J]. Chemosphere, 2016, 165:519-528
|
Biczak R,Śnioszek M, Telesiński A, et al. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions[J]. Ecotoxicology and Environmental Safety, 2017, 139:463-471
|
Tot A, Vraneš M, Maksimović I, et al. The effect of imidazolium based ionic liquids on wheat and barley germination and growth:Influence of length and oxygen functionalization of alkyl side chain[J]. Ecotoxicology and Environmental Safety, 2018, 147:401-406
|
Habibul N, Hu Y Y, Hu Y, et al. Alkyl chain length affecting uptake of imidazolium based ionic liquids by ryegrass (Lolium perenne L.)[J]. Journal of Hazardous Materials, 2021, 401:123376
|
Chu L L, Kang X, Li D P, et al. The toxicological mechanism of two typical imidazole ionic liquids in textile industry on Isatis tinctoria[J]. Chemosphere, 2021, 275:130042
|
Jin M K, Wang H, Liu H J, et al. Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana[J]. Environmental Pollution, 2020, 260:114013
|
Liu H J, Xia Y L, Fan H Y, et al. Effect of imidazolium-based ionic liquids with varying carbon chain lengths on Arabidopsis thaliana:Response of growth and photosynthetic fluorescence parameters[J]. Journal of Hazardous Materials, 2018, 358:327-336
|
Zhang L, Wang T Q, Zheng F X, et al. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings[J]. Ecotoxicology and Environmental Safety, 2016, 125:107-115
|
Xia Y L, Liu D D, Dong Y, et al. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus[J]. Chemosphere, 2018, 195:437-447
|
Liu D D, Liu H J, Wang S T, et al. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus:Growth inhibition, phototoxicity, and oxidative stress[J]. The Science of the Total Environment, 2018, 622-623:1572-1580
|
Fan H Y, Jin M K, Wang H, et al. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure[J]. Environmental Pollution, 2019, 250:155-165
|
Wang H, Fan H Y, Liu H J, et al. Oxidative stress response mechanism of Scenedesmus obliquus to ionic liquids with different number of methyl-substituents[J]. Journal of Hazardous Materials, 2020, 399:122847
|
Liu H J, Wu J, Zhang X Q, et al. Enantioselective oxidative stress caused by chiral ionic liquids forms of 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus[J]. The Science of the Total Environment, 2017, 595:819-827
|
Chen H, Zou Y Q, Zhang L J, et al. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae[J]. Aquatic Toxicology, 2014, 154:114-120
|
Fan H Y, Liu H J, Dong Y, et al. Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus:Role of cations and anions[J]. The Science of the Total Environment, 2019, 651(Pt 1):570-579
|
Deng Y, Beadham I, Ren H Y, et al. A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry[J]. Ecotoxicology and Environmental Safety, 2020, 194:110392
|
Quraishi K S, Bustam M A, Krishnan S, et al. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris & Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR)[J]. Chemosphere, 2017, 184:642-651
|
Chen B, Dong J W, Li B, et al. Using a freshwater green alga Chlorella pyrenoidosa to evaluate the biotoxicity of ionic liquids with different cations and anions[J]. Ecotoxicology and Environmental Safety, 2020, 198:110604
|
Jin M K, Wang H, Li Z, et al. Physiological responses of Chlorella pyrenoidosa to 1-hexyl-3-methyl chloride ionic liquids with different cations[J]. Science of the Total Environment, 2019, 685:315-323
|
Cho C W, Jeon Y C, Pham T P T, et al. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum[J]. Ecotoxicology and Environmental Safety, 2008, 71(1):166-171
|
Chen B, Xue C Y, Amoah P K, et al. Impacts of four ionic liquids exposure on a marine diatom Phaeodactylum tricornutum at physiological and biochemical levels[J]. The Science of the Total Environment, 2019, 665:492-501
|
Deng X Y, Li D, Wang L, et al. Potential toxicity of ionic liquid ([C12mim]BF4) on the growth and biochemical characteristics of a marine diatom Phaeodactylum tricornutum[J]. The Science of the Total Environment, 2017, 586:675-684
|
Evans-White M A, Lamberti G A. Direct and indirect effects of a potential aquatic contaminant on grazer-algae interactions[J]. Environmental Toxicology and Chemistry, 2009, 28(2):418-426
|
张文林, 唐聪, 闫佳伟, 等. 离子液体的生物毒性及降解性研究[J]. 江苏农业科学, 2019, 47(5):204-208
Zhang W L, Tang C, Yan J W, et al. Study on biotoxicity and biodegradation of ionic liquids[J]. Jiangsu Agricultural Sciences, 2019, 47(5):204-208(in Chinese)
|
Zhang C, Zhu L S, Wang J H, et al. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 140:235-240
|
Li W X, Zhu L, Du Z K, et al. Acute toxicity, oxidative stress and DNA damage of three task-specific ionic liquids ([C2NH2MIm]BF4,[MOEMIm]BF4, and[HOEMIm]BF4) to zebrafish (Danio rerio)[J]. Chemosphere, 2020, 249:126119
|
Zhang C, Du Z K, Wang J H, et al. Exposed zebrafish (Danio rerio) to imidazolium-based ionic liquids with different anions and alkyl-chain lengths[J]. Chemosphere, 2018, 203:381-386
|
Younes N, Salem R, Al-Asmakh M, et al. Toxicity evaluation of selected ionic liquid compounds on embryonic development of zebrafish[J]. Ecotoxicology and Environmental Safety, 2018, 161:17-24
|
Chang X L, Liu P, Feng J C, et al. Impact of chronic exposure to the ionic liquid ([C8mim] [PF6]) on intestinal physical barrier, immunological barrier and gut microbiota in common carp (Cyprinus carpio L.)[J]. Environmental Research, 2020, 189:109919
|
Ma J G, Li X X, Cui M K, et al. Negative impact of the imidazolium-based ionic liquid[C8mim]Br on silver carp (Hypophthalmichthys molitrix):Long-term and low-level exposure[J]. Chemosphere, 2018, 213:358-367
|
Thamke V R, Kodam K M. Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1[J]. Journal of Hazardous Materials, 2016, 320:408-416
|
Amde M, Liu J F, Pang L. Environmental application, fate, effects, and concerns of ionic liquids:A review[J]. Environmental Science & Technology, 2015, 49(21):12611-12627
|
杜启艳, 王亚星, 南平, 等. 离子液体[C8mim]Cl对泥鳅肝脏的氧化损伤效应[J]. 河南师范大学学报(自然科学版), 2019, 47(1):88-92 Du Q Y, Wang Y X, Nan P, et al. Oxidative damage effect of ionic liquids[C8mim]Cl on the liver of loach[J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(1):88-92(in Chinese)
|
燕帅国, 南平, 杜启艳, 等. 离子液体[C16mim]Cl对泥鳅的毒性效应[J]. 生态毒理学报, 2013, 8(1):92-96
Yan S G, Nan P, Du Q Y, et al. Toxicity of[C16mim]Cl to loach (Misgurnus anguillicaudatus)[J]. Asian Journal of Ecotoxicology, 2013, 8(1):92-96(in Chinese)
|
Young G R, Abdelghany T M, Leitch A C, et al. Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids[J]. PLoS One, 2020, 15(3):e0229745
|
Leitch A C, Abdelghany T M, Charlton A, et al. Renal injury and hepatic effects from the methylimidazolium ionic liquid M8OI in mouse[J]. Ecotoxicology and Environmental Safety, 2020, 202:110902
|
Ma L, Andoh V, Liu H Y, et al. Biological effects of gold nanoclusters are evaluated by using silkworm as a model animal[J]. Journal of Materials Science, 2019, 54(6):4997-5007
|
Gao K, Li B, Chen R Z, et al. A feasibility study of using silkworm larvae as a novel in vivo model to evaluate the biotoxicity of ionic liquids[J]. Ecotoxicology and Environmental Safety, 2021, 209:111759
|
Gao K, Yang M T, Li B, et al. Molecular response mechanisms of silkworm (Bombyx mori L.) to the toxicity of 1-octyl-3-methylimidazole chloride based on transcriptome analysis of midguts and silk glands[J]. Ecotoxicology and Environmental Safety, 2021, 227:112915
|
Shao Y T, Wang J H, Wang J, et al. Oxidative stress and genotoxic effects in earthworms induced by five imidazolium bromide ionic liquids with different alkyl chains[J]. Chemosphere, 2019, 227:570-579
|
张淑敏. 离子液体[C4mim]BF4、[C8mim]BF4和[C8mim]Br对蚯蚓的氧化胁迫及DNA损伤[D]. 泰安:山东农业大学, 2014:20-60 Zhang S M. Oxidative stress and DNA damage induced by ionic liquids[C4mim]BF4
,[C8mim]BF4 and[C8mim]Br exposure in earthworm exposure in earthworm[D]. Taian:Shandong Agricultural University, 2014:20-60(in Chinese)
|
Guo Y Y, Liu T, Zhang J, et al. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida)[J]. Environmental Toxicology and Chemistry, 2016, 35(2):411-418
|
Shao Y T, Wang J, Du Z K, et al. Toxicity of 1-alkyl-3-methyl imidazolium nitrate ionic liquids to earthworms:The effects of carbon chains of different lengths[J]. Chemosphere, 2018, 206:302-309
|
You L J, Wang Z, Kang Y L, et al. Experimental investigation of porosity and permeability change caused by salting out in tight sandstone gas reservoirs[J]. Journal of Natural Gas Geoscience, 2018, 3(6):347-352
|
Zhang C, Zhang S, Zhu L S, et al. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna[J]. Environmental Pollution, 2017, 229:887-895
|
Yu M, Liu C H, Zhao H H, et al. The effects of 1-hexyl-3-methylimidazolium bromide on embryonic development and reproduction in Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2020, 190:110137
|
Siciliano A, Russo D, Spasiano D, et al. Chronic toxicity of treated and untreated aqueous solutions containing imidazole-based ionic liquids and their oxydized by-products[J]. Ecotoxicology and Environmental Safety, 2019, 180:466-472
|
Cui Y H, Shi Q S, Zhang D D, et al. Detoxification of ionic liquids using glutathione, cysteine, and NADH:Toxicity evaluation by Tetrahymena pyriformis[J]. Environmental Pollution, 2021, 276:116725
|
Peng Y, Tong Z H, Chong H J, et al. Toxic effects of prolonged exposure to[C14mim]Br on Caenorhabditis elegans[J]. Chemosphere, 2018, 208:226-232
|
Zhu C J, Peng Y, Tong Z H, et al. Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans[J]. Chemosphere, 2016, 157:65-70
|
Thamke V R, Tapase S R, Kodam K M. Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems[J]. Water Research, 2017, 125:237-248
|
Zanoni B V, Brasil Romão G, Andrade R S, et al. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells:in vitro and in silico studies[J]. Toxicology Research, 2019, 8(3):447-458
|
Jing B X, Lan N, Qiu J, et al. Interaction of ionic liquids with a lipid bilayer:A biophysical study of ionic liquid cytotoxicity[J]. The Journal of Physical Chemistry B, 2016, 120(10):2781-2789
|
Abdelghany T M, Leitch A C, Nevjestić I, et al. Emerging risk from "environmentally-friendly" solvents:Interaction of methylimidazolium ionic liquids with the mitochondrial electron transport chain is a key initiation event in their mammalian toxicity[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2020, 145:111593
|
Hwang J H, Park H, Choi D W, et al. Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2018, 46:194-202
|
McLaughlin M, Gilea M A, Earle M J, et al. Characterization of ionic liquid cytotoxicity mechanisms in human keratinocytes compared with conventional biocides[J]. Chemosphere, 2021, 270:129432
|
Wan R Y, Xia X H, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to HepG2 cells[J]. Toxicology in Vitro, 2018, 52:1-7
|
Xia X H, Wan R Y, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to Hela cells[J]. Ecotoxicology and Environmental Safety, 2018, 162:408-414
|
Hu L X, Xiong Q, Shi W J, et al. New insight into the negative impact of imidazolium-based ionic liquid[C10mim]Cl on Hela cells:From membrane damage to biochemical alterations[J]. Ecotoxicology and Environmental Safety, 2021, 208:111629
|
Ma J G, Li X Y. Insight into the negative impact of ionic liquid:A cytotoxicity mechanism of 1-methyl-3-octylimidazolium bromide[J]. Environmental Pollution, 2018, 242:1337-1345
|
Bakshi K, Mitra S, Sharma V K, et al. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane[J]. Biochimica et Biophysica Acta Biomembranes, 2020, 1862(2):183103
|
Leitch A C, Abdelghany T M, Probert P M, et al. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2020, 136:111069
|
Borkowski A, Ƚawniczak Ƚ, Cƚapa T, et al. Different antibacterial activity of novel theophylline-based ionic liquids-Growth kinetic and cytotoxicity studies[J]. Ecotoxicology and Environmental Safety, 2016, 130:54-64
|
Yu J, Zhang S S, Dai Y T, et al. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids[J]. Journal of Hazardous Materials, 2016, 307:73-81
|
Wu S G, Zeng L B, Wang C Y, et al. Assessment of the cytotoxicity of ionic liquids on Spodoptera frugiperda 9(Sf-9) cell lines via in vitro assays[J]. Journal of Hazardous Materials, 2018, 348:1-9
|
Pérez S A, Montalbán M G, Carissimi G, et al. In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines[J]. Journal of Hazardous Materials, 2020, 385:121513
|
Liwarska-Bizukojc E. Influence of imidazolium ionic liquids on dehydrogenase activity of activated sludge microorganisms[J]. Water, Air, & Soil Pollution, 2011, 221(1):327-335
|
Fan Y C, Dong X, Yan L L, et al. Evaluation of the toxicity of ionic liquids on trypsin:A mechanism study[J]. Chemosphere, 2016, 148:241-247
|
Fan Y C, Dong X, Li X J, et al. Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2016, 159:128-133
|
Dong X, Fan Y C, Zhang H, et al. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity[J]. International Journal of Biological Macromolecules, 2016, 86:155-161
|
Arning J, Stolte S, B schen A, et al. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase[J]. Green Chemistry, 2008, 10(1):47-58
|
Zhang H C, Shi C Y, Yang H H, et al. Genotoxicity evaluation of ionic liquid 1-octyl-3-methylimidazolium bromide in freshwater planarian Dugesia japonica using RAPD assay[J]. Ecotoxicology and Environmental Safety, 2016, 134 P1:17-22
|