洗护用品中的抗菌成分对水生态环境的危害作用

孙伟莲, 孙东雷, 黄维, 张遵真. 洗护用品中的抗菌成分对水生态环境的危害作用[J]. 生态毒理学报, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001
引用本文: 孙伟莲, 孙东雷, 黄维, 张遵真. 洗护用品中的抗菌成分对水生态环境的危害作用[J]. 生态毒理学报, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001
Sun Weilian, Sun Donglei, Huang Wei, Zhang Zunzhen. Adverse Effects of Antibacterial Ingredients in Sanitary Products on Aquatic Ecological Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001
Citation: Sun Weilian, Sun Donglei, Huang Wei, Zhang Zunzhen. Adverse Effects of Antibacterial Ingredients in Sanitary Products on Aquatic Ecological Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001

洗护用品中的抗菌成分对水生态环境的危害作用

    作者简介: 孙伟莲(1997-),女,硕士研究生,研究方向为环境与健康,E-mail:1273780484@qq.com
    通讯作者: 张遵真, E-mail: zhangzunzhen@163.com
  • 基金项目:

    国家自然科学基金面上项目(82073510)

  • 中图分类号: X171.5

Adverse Effects of Antibacterial Ingredients in Sanitary Products on Aquatic Ecological Environment

    Corresponding author: Zhang Zunzhen, zhangzunzhen@163.com
  • Fund Project:
  • 摘要: 随着抗菌药物在医疗、工农业和日常生活中的广泛应用,水体抗生素污染已经成为全球公共卫生问题。新型冠状病毒肺炎疫情的暴发促使人们对抗菌卫生用品的使用量进一步增加,大量杀菌剂随生活废水排入水体,导致水环境中各种抗菌物质浓度急剧升高,进一步加重了水体的净化负担。洗护用品中的抗菌成分大多具有广谱杀菌作用,排入水体后势必对水中的常居微生物产生危害,增加水中微生物耐药性,同时也给水生生物带来威胁。本文系统总结了洗护用品中最常添加的酚类、含氯类和季铵盐类等杀菌剂在国内外水环境中的浓度分布和对微生物、水生生物的毒性作用,以期为我国科学倡导及管理洗护用品中抗菌成分的添加和使用提供科学依据。
  • 加载中
  • Kim S A, Moon H, Lee K, et al. Bactericidal effects of triclosan in soap both in vitro and in vivo[J]. The Journal of Antimicrobial Chemotherapy, 2015, 70(12):3345-3352
    Wu C X, Spongberg A L, Witter J D, et al. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water[J]. Environmental Science & Technology, 2010, 44(16):6157-6161
    Fischer A. FDA issues final rule on safety and effectiveness of antibacterial soaps[EB/OL]. (2016-09-02)[2022-01-16]. https://www.fda.gov/news-events/press-announcements/fda-issues-final-rule-safety-and-effectiveness-antibacterial-soaps
    Merchel Piovesan Pereira B, Tagkopoulos I. Benzalkonium chlorides:Uses, regulatory status, and microbial resistance[J]. Applied and Environmental Microbiology, 2019, 85(13):e00377-e00319
    Su C, Cui Y, Liu D, et al. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China:Which chemicals are the prioritized ones?[J]. The Science of the Total Environment, 2020, 720:137652
    Larsson D G J, Flach C F. Antibiotic resistance in the environment[J]. Nature Reviews Microbiology, 2021, 19:1-13
    Dhama K, Patel S K, Kumar R, et al. The role of disinfectants and sanitizers during COVID-19 pandemic:Advantages and deleterious effects on humans and the environment[J]. Environmental Science and Pollution Research International, 2021, 28(26):34211-34228
    Tan J H, Kuang H X, Wang C C, et al. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products:Chloroxylenol[J]. The Science of the Total Environment, 2021, 786:147524
    Loraine G A, Pettigrove M E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California[J]. Environmental Science & Technology, 2006, 40(3):687-695
    Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK[J]. Water Research, 2008, 42(13):3498-3518
    Kimura K, Kameda Y, Yamamoto H, et al. Occurrence of preservatives and antimicrobials in Japanese rivers[J]. Chemosphere, 2014, 107:393-399
    徐倩云, 艾舜豪, 高祥云, 等. 鄱阳湖流域水体和水产品中苯酚的暴露特征及人体健康风险评估[J]. 环境科学, 2021, 42(3):1354-1360

    Xu Q Y, Ai S H, Gao X Y, et al. Human health risk assessment of phenol in Poyang Lake Basin[J]. Environmental Science, 2021, 42(3):1354-1360(in Chinese)

    Lalonde B, Garron C, Dove A, et al. Investigation of spatial distributions and temporal trends of triclosan in Canadian surface waters[J]. Archives of Environmental Contamination and Toxicology, 2019, 76(2):231-245
    Das Sarkar S, Nag S K, Kumari K, et al. Occurrence and safety evaluation of antimicrobial compounds triclosan and triclocarban in water and fishes of the multitrophic niche of River Torsa, India[J]. Archives of Environmental Contamination and Toxicology, 2020, 79(4):488-499
    Zhao J L, Ying G G, Liu Y S, et al. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China:From source to the receiving environment[J]. Journal of Hazardous Materials, 2010, 179(1-3):215-222
    Li W L, Zhang Z F, Sparham C, et al. Validation of sampling techniques and SPE-UPLC/MS/MS for home and personal care chemicals in the Songhua Catchment, Northeast China[J]. The Science of the Total Environment, 2020, 707:136038
    吴飞, 王冰, 陈晨. 高效液相色谱法测定游泳池水中三氯卡班、三氯生和甲基三氯生的含量[J]. 理化检验-化学分册, 2020, 56(4):419-422

    Wu F, Wang B, Chen C. HPLC determination of triclocarban, triclosan and methyltriclosan in swimming pool water[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(4):419-422(in Chinese)

    Ruan T, Song S J, Wang T, et al. Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China[J]. Environmental Science & Technology, 2014, 48(8):4289-4297
    Li X L, Luo X J, Mai B X, et al. Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments[J]. Environmental Pollution, 2014, 185:127-133
    Cory R M, Davis T W, Dick G J, et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie[J]. Frontiers in Marine Science, 2016, 3:54
    Sunday M O, Jadoon W A, Ayeni T T, et al. Heterogeneity and potential aquatic toxicity of hydrogen peroxide concentrations in selected rivers across Japan[J]. The Science of the Total Environment, 2020, 733:139349
    von Wintersdorff C J, Penders J, van Niekerk J M, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Frontiers in Microbiology, 2016, 7:173
    Jian Z H, Zeng L, Xu T J, et al. Antibiotic resistance genes in bacteria:Occurrence, spread, and control[J]. Journal of Basic Microbiology, 2021, 61(12):1049-1070
    Septimus E J. Antimicrobial resistance:An antimicrobial/diagnostic stewardship and infection prevention approach[J]. The Medical Clinics of North America, 2018, 102(5):819-829
    Alanis A J. Resistance to antibiotics:Are we in the post-antibiotic era?[J]. Archives of Medical Research, 2005, 36(6):697-705
    Bojarski B, Kot B, Witeska M. Antibacterials in aquatic environment and their toxicity to fish[J]. Pharmaceuticals, 2020, 13(8):189
    王丽梅, 罗义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报, 2010, 21(4):1063-1069

    Wang L M, Luo Y, Mao D Q, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance[J]. Chinese Journal of Applied Ecology, 2010, 21(4):1063-1069(in Chinese)

    Xiang Y, Wu H, Li L, et al. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China[J]. Ecotoxicology and Environmental Safety, 2021, 213:112044
    Carey D E. Altered antibiotic tolerance in anaerobic digesters acclimated to triclosan or triclocarban[J]. Chemosphere, 2016, 163:22-26
    Harrison K R, Kappell A D, McNamara P J. Benzalkonium chloride alters phenotypic and genotypic antibiotic resistance profiles in a source water used for drinking water treatment[J]. Environmental Pollution, 2020, 257:113472
    Christensen E G, Gram L, Kastbjerg V G. Sublethal triclosan exposure decreases susceptibility to gentamicin and other aminoglycosides in Listeria monocytogenes[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(9):4064-4071
    Lu J, Guo J. Disinfection spreads antimicrobial resistance[J]. Science, 2021, 371(6528):474
    Xu L K, Ouyang W Y, Qian Y Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems[J]. Environmental Pollution, 2016, 213:119-126
    曹弘扬, 汪庆, 赵佳丽, 等. 食源性抗生素耐药菌的污染现状、传播扩散及健康风险研究进展[J]. 中国抗生素杂志, 2022, 47(10):1002-1012

    Cao H Y, Wang Q, Zhao J L, et al. Progress on the contamination status, dissemination, and health risks of foodborne antibiotic resistant bacteria[J]. Chinese Journal of Antibiotics, 2022, 47(10):1002-1012(in Chinese)

    Blaustein R A, Michelitsch L M, Glawe A J, et al. Toothbrush microbiomes feature a meeting ground for human oral and environmental microbiota[J]. Microbiome, 2021, 9(1):32
    Han J, Qiu W, Campbell E C, et al. Nylon bristles and elastomers retain centigram levels of triclosan and other chemicals from toothpastes:Accumulation and uncontrolled release[J]. Environmental Science & Technology, 2017, 51(21):12264-12273
    Stacy A, Andrade-Oliveira V, McCulloch J A, et al. Infection trains the host for microbiota-enhanced resistance to pathogens[J]. Cell, 2021, 184(3):615-627
    Huemer M, Mairpady Shambat S, Brugger S D, et al. Antibiotic resistance and persistence-Implications for human health and treatment perspectives[J]. EMBO Reports, 2020, 21(12):e51034
    Nadeem S F, Gohar U F, Tahir S F, et al. Antimicrobial resistance:More than 70 years of war between humans and bacteria[J]. Critical Reviews in Microbiology, 2020, 46(5):578-599
    Capkin E, Ozcelep T, Kayis S, et al. Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout[J]. Chemosphere, 2017, 182:720-729
    朱英. 典型家用消毒剂对稀有鮈鲫毒性及酶活性影响[J]. 环境科学与技术, 2019, 42(7):51-56

    Zhu Y. Toxicity and enzyme activity effects of typical family-use disinfectants on rare minnow[J]. Environmental Science & Technology, 2019, 42(7):51-56(in Chinese)

    朱英, 胡双庆, 沈根祥, 等. 2种典型家用消毒剂对水生生物的急性毒性影响及生态效应阈值研究[J]. 生态毒理学报, 2018, 13(4):161-169

    Zhu Y, Hu S Q, Shen G X, et al. The study of acute toxicity effects on aquatic organisms and acute ecological threshold (PNECs) of two typical household disinfectants[J]. Asian Journal of Ecotoxicology, 2018, 13(4):161-169(in Chinese)

    European Chemicals Agency. Information on biocides[EB/OL]. (2022-05-25)[2022-05-30]. https://echa.europa.eu/en/information-on-chemicals/biocidal-products
    Brausch J M, Rand G M. A review of personal care products in the aquatic environment:Environmental concentrations and toxicity[J]. Chemosphere, 2011, 82(11):1518-1532
    陈敏. 三氯生与三氯卡班的生态毒性研究进展[J]. 广东化工, 2021, 48(1):62-63

    Chen M. Progress in the study of ecotoxicity of triclosan and triclocarban[J]. Guangdong Chemical Industry, 2021, 48(1):62-63(in Chinese)

    高昆, 陈娟, 李圆圆, 等. 三氯生和三氯卡班对两栖动物蝌蚪的急性毒性[J]. 生态毒理学报, 2016, 11(4):226-231

    Gao K, Chen J, Li Y Y, et al. Acute toxicity of triclosan and triclocarban to amphibian tadpoles[J]. Asian Journal of Ecotoxicology, 2016, 11(4):226-231(in Chinese)

    Ciniglia C, Cascone C, Giudice R L, et al. Application of methods for assessing the geno- and cytotoxicity of triclosan to C. ehrenbergii[J]. Journal of Hazardous Materials, 2005, 122(3):227-232
    张立娜, 王芷茵, 安婧, 等. 水环境中三氯生残留对轮叶黑藻的生态毒性效应[J]. 生态学杂志, 2019, 38(12):3754-3761

    Zhang L N, Wang Z Y, An J, et al. Ecotoxicological effects of triclosan on Hydrilla verticillata in water[J]. Chinese Journal of Ecology, 2019, 38(12):3754-3761(in Chinese)

    Oliveira R, Domingues I, Grisolia C K, et al. Effects of triclosan on zebrafish early-life stages and adults[J]. Environmental Science and Pollution Research, 2009, 16(6):679-688
    张立娜, 王芷茵, 安婧. 底泥中三氯生残留对轮叶黑藻的生态毒性效应[J]. 农业环境科学学报, 2019, 38(9):2057-2065

    Zhang L N, Wang Z Y, An J. Ecotoxicological effects of triclosan on Hydrilla verticillata in sediments[J]. Journal of Agro-Environment Science, 2019, 38(9):2057-2065(in Chinese)

    United States Environmental Protection Agency (US EPA). Reregistration eligibility decision for alkyl dimethyl benzyl ammonium chloride (ADBAC)[R]. Washington DC:US EPA, 2006
    Lavorgna M, Russo C, D'Abrosca B, et al. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems[J]. Environmental Pollution, 2016, 210:34-39
    Antunes S C, Nunes B, Rodrigues S, et al. Effects of chronic exposure to benzalkonium chloride in Oncorhynchus mykiss:Cholinergic neurotoxicity, oxidative stress, peroxidative damage and genotoxicity[J]. Environmental Toxicology and Pharmacology, 2016, 45:115-122
    李祥英, 杨法辉, 李秀环, 等. 两种季铵盐阳离子表面活性剂对水生生物的毒性效应[J]. 农业环境科学学报, 2012, 31(4):673-678

    Li X Y, Yang F H, Li X H, et al. Toxicity of two quaternary ammonium cationic surfactants to aquatic organisms[J]. Journal of Agro-Environment Science, 2012, 31(4):673-678(in Chinese)

    Chen Y, Geurts M, Sjollema S, et al. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays:How test design affects bioavailability and effect concentrations[J]. Environmental Toxicology and Chemistry, 2014, 33(3):606-615
    de Oliveira Melo A, Santos D B D, Silva L D, et al. Molluscicidal activity of polyhexamethylene biguanide hydrochloride on the early-life stages and adults of the Biomphalaria glabrata (Say, 1818)[J]. Chemosphere, 2019, 216:365-371
    Yoon J, Kang M S, Jung J, et al. Humidifier disinfectant consumption and humidifier disinfectant-associated lung injury in South Korea:A nationwide population-based study[J]. International Journal of Environmental Research and Public Health, 2021, 18(11):6136
    高东辉, 李昌伟, 吴霓, 等. 过氧化氢、洋地黄皂苷对海洋青鳉鱼的致毒作用[J]. 海洋环境科学, 2017, 36(6):801-805

    , 819 Gao D H, Li C W, Wu N, et al. The toxicity of hydrogen peroxide and digitonin on Oryzias melastigma[J]. Marine Environmental Science, 2017, 36(6):801-805, 819(in Chinese)

    刘治平, 杨华明. 植物源性消毒与抗菌制剂发展现状[J]. 中国消毒学杂志, 2019, 36(4):302-303
    刘光荣, 翟春涛, 金敏蓉, 等. 天然抗菌剂对5种致病菌的抑制作用研究[J]. 中国真菌学杂志, 2020, 15(2):88-92

    Liu G R, Zhai C T, Jin M R, et al. The inhibitory effects of natural antibacterial agent on 5 pathogenic microorganisms[J]. Chinese Journal of Mycology, 2020, 15(2):88-92(in Chinese)

    Brose D A, Kumar K, Liao A, et al. A reduction in triclosan and triclocarban in water resource recovery facilities' influent, effluent, and biosolids following the US Food and Drug Administration's 2013 proposed rulemaking on antibacterial products[J]. Water Environment Research, 2019, 91(8):715-721
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.5 %DOWNLOAD: 2.5 %HTML全文: 75.1 %HTML全文: 75.1 %摘要: 22.4 %摘要: 22.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 88.5 %其他: 88.5 %Beijing: 5.3 %Beijing: 5.3 %Hangzhou: 0.9 %Hangzhou: 0.9 %XX: 4.3 %XX: 4.3 %济南: 0.3 %济南: 0.3 %深圳: 0.6 %深圳: 0.6 %其他BeijingHangzhouXX济南深圳Highcharts.com
计量
  • 文章访问数:  1932
  • HTML全文浏览数:  1932
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-16
孙伟莲, 孙东雷, 黄维, 张遵真. 洗护用品中的抗菌成分对水生态环境的危害作用[J]. 生态毒理学报, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001
引用本文: 孙伟莲, 孙东雷, 黄维, 张遵真. 洗护用品中的抗菌成分对水生态环境的危害作用[J]. 生态毒理学报, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001
Sun Weilian, Sun Donglei, Huang Wei, Zhang Zunzhen. Adverse Effects of Antibacterial Ingredients in Sanitary Products on Aquatic Ecological Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001
Citation: Sun Weilian, Sun Donglei, Huang Wei, Zhang Zunzhen. Adverse Effects of Antibacterial Ingredients in Sanitary Products on Aquatic Ecological Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 135-143. doi: 10.7524/AJE.1673-5897.20220116001

洗护用品中的抗菌成分对水生态环境的危害作用

    通讯作者: 张遵真, E-mail: zhangzunzhen@163.com
    作者简介: 孙伟莲(1997-),女,硕士研究生,研究方向为环境与健康,E-mail:1273780484@qq.com
  • 四川大学华西公共卫生学院/华西第四医院,成都 610041
基金项目:

国家自然科学基金面上项目(82073510)

摘要: 随着抗菌药物在医疗、工农业和日常生活中的广泛应用,水体抗生素污染已经成为全球公共卫生问题。新型冠状病毒肺炎疫情的暴发促使人们对抗菌卫生用品的使用量进一步增加,大量杀菌剂随生活废水排入水体,导致水环境中各种抗菌物质浓度急剧升高,进一步加重了水体的净化负担。洗护用品中的抗菌成分大多具有广谱杀菌作用,排入水体后势必对水中的常居微生物产生危害,增加水中微生物耐药性,同时也给水生生物带来威胁。本文系统总结了洗护用品中最常添加的酚类、含氯类和季铵盐类等杀菌剂在国内外水环境中的浓度分布和对微生物、水生生物的毒性作用,以期为我国科学倡导及管理洗护用品中抗菌成分的添加和使用提供科学依据。

English Abstract

参考文献 (61)

返回顶部

目录

/

返回文章
返回