对羟基苯甲酸丙酯对食蚊鱼(Gambusia affinis)鳃和表皮K+流速的影响

闫小雨, 曾鸿鹄, 宋晓红, 梁延鹏, 黎昕, 刘志锐, 黄思齐, 邓鸿彬. 对羟基苯甲酸丙酯对食蚊鱼(Gambusia affinis)鳃和表皮K+流速的影响[J]. 生态毒理学报, 2021, 16(3): 291-301. doi: 10.7524/AJE.1673-5897.20200323001
引用本文: 闫小雨, 曾鸿鹄, 宋晓红, 梁延鹏, 黎昕, 刘志锐, 黄思齐, 邓鸿彬. 对羟基苯甲酸丙酯对食蚊鱼(Gambusia affinis)鳃和表皮K+流速的影响[J]. 生态毒理学报, 2021, 16(3): 291-301. doi: 10.7524/AJE.1673-5897.20200323001
Yan Xiaoyu, Zeng Honghu, Song Xiaohong, Liang Yanpeng, Li Xin, Liu Zhirui, Huang Siqi, Deng Hongbin. Effect of Propylparaben (PrP) on K+ Velocity in Skin and Gills of Mosquito Fish (Gambusia affinis)[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 291-301. doi: 10.7524/AJE.1673-5897.20200323001
Citation: Yan Xiaoyu, Zeng Honghu, Song Xiaohong, Liang Yanpeng, Li Xin, Liu Zhirui, Huang Siqi, Deng Hongbin. Effect of Propylparaben (PrP) on K+ Velocity in Skin and Gills of Mosquito Fish (Gambusia affinis)[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 291-301. doi: 10.7524/AJE.1673-5897.20200323001

对羟基苯甲酸丙酯对食蚊鱼(Gambusia affinis)鳃和表皮K+流速的影响

    作者简介: 闫小雨(1994-),女,硕士研究生,研究方向为生态毒理学,E-mail:942666792@qq.com
    通讯作者: 宋晓红, E-mail: sxh215@163.com
  • 基金项目:

    国家自然科学基金资助项目(51868012,51578171);广西科技计划项目(桂科AD18126018);广西“八桂学者”岗位专项经费资助项目

  • 中图分类号: X171.5

Effect of Propylparaben (PrP) on K+ Velocity in Skin and Gills of Mosquito Fish (Gambusia affinis)

    Corresponding author: Song Xiaohong, sxh215@163.com
  • Fund Project:
  • 摘要: 食品、医药和化妆品等行业大量使用含有对羟基苯甲酸丙酯(propylparaben,PrP)的防腐剂导致其广泛分布于河流、空气和土壤等自然环境中。为探究PrP对鱼类的毒性作用,以食蚊鱼(Gambusia affinis)为模式生物,分别开展了急性毒性实验和K+流速检测实验。急性毒性实验中设置8种不同浓度的PrP溶液得到96 h半数致死浓度(96 h-LC50)和安全浓度;在K+流速检测实验中利用非损伤微测技术(non-invasive micro-test technology,NMT)分别检测在3种不同浓度(96 h-LC50/10(0.9 mg·L-1),96 h-LC50/5(1.8 mg·L-1),96 h-LC50/2(4.6 mg·L-1))的PrP溶液瞬时暴露和96 h暴露后食蚊鱼表皮和鱼鳃的K+流速变化。急性毒性实验结果表明,PrP的96 h-LC50为9.14 mg·L-1,安全浓度为2.85 mg·L-1;K+离子流速检测实验结果表明,随着PrP暴露浓度的升高,K+流速波动区间逐渐增大,且与暴露浓度成正相关;PrP瞬时暴露和96 h暴露后鱼鳃细胞均向外排出K+,具有剂量效应,K+外排量随着浓度的升高而增大;与之相反,鱼体表皮细胞向内吸收K+,K+流速波动区间随着浓度的升高而增大,呈现一定的剂量效应。上述研究结果表明,PrP对鱼体有一定的毒性,会破坏鱼体内钠钾泵的离子转运功能,PrP毒性强度与暴露时间和暴露方式有关,比较实验中鱼体2种组织的细胞,鱼体表皮细胞抵抗PrP损伤的能力更强,鱼鳃细胞对PrP暴露更敏感,鱼鳃细胞K+流速的变化可以有效指示PrP的毒性效应,为进一步研究PrP对鱼类的毒性机制提供依据。
  • 加载中
  • Soni M G, Carabin I G, Burdock G A. Safety assessment of esters of p-hydroxybenzoic acid (parabens)[J]. Food and Chemical Toxicology, 2005, 43(7):985-1015
    Liao C Y, Liu F, Kannan K. Occurrence of and dietary exposure to parabens in foodstuffs from the United States[J]. Environmental Science & Technology, 2013, 47(8):3918-3925
    Haman C, Dauchy X, Rosin C, et al. Occurrence, fate and behavior of parabens in aquatic environments:A review[J]. Water Research, 2015, 68:1-11
    Zhao X, Qiu W H, Zheng Y, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 2019, 180:43-52
    Viglino L, Prévost M, Sauvé S. High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/MS[J]. Journal of Environmental Monitoring, 2011, 13(3):583-590
    Haman C, Dauchy X, Rosin C, et al. Occurrence, fate and behavior of parabens in aquatic environments:A review[J]. Water Research, 2015, 68:1-11
    Xue X H, Xue J C, Liu W B, et al. Trophic magnification of parabens and their metabolites in a subtropical marine food web[J]. Environmental Science & Technology, 2017, 51(2):780-789
    Bereketoglu C, Pradhan A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish[J]. Science of the Total Environment, 2019, 671:129-139
    Pedersen K L, Pedersen S N, Christiansen L B, et al. The preservatives ethyl-, propyl-and butylparaben are oestrogenic in an in vivo fish assay[J]. Pharmacology & Toxicology, 2000, 86(3):110-113
    马莉, 史乾涛, 袁小英, 等. 内分泌干扰物对鲤鱼器官中离子平衡的影响[J]. 环境化学, 2014, 33(3):381-385

    Ma L, Shi Q T, Yuan X Y, et al. The influence of endocrine disrupters on ion balance in carp organs[J]. Environmental Chemistry, 2014, 33(3):381-385(in Chinese)

    Hung G Y, Wu C L, Chou Y L, et al. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos[J]. Aquatic Toxicology, 2019, 209:168-177
    Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill:Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Reviews, 2005, 85(1):97-177
    Baldissera M D, Souza C F, Júnior Jr, et al. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish:Impairment on renal bioenergetics[J]. Microbial Pathogenesis, 2017, 110:439-443
    Hung G Y, Wu C L, Chou Y L, et al. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos[J]. Aquatic Toxicology, 2019, 209:168-177
    Shabala S, Cuin T A, Shabala L, et al. Quantifying kinetics of net ion fluxes from plant tissues by non-invasive microelectrode measuring MIFE technique[J]. Methods in Molecular Biology, 2012, 913:119-134
    Tannen R L, Wedell E, Moore R. Renal adaptation to a high potassium intake. The role of hydrogen ion[J]. The Journal of Clinical Investigation, 1973, 52(9):2089-2101
    Lin L Y, Yeh Y H, Hung G Y, et al. Role of calcium-sensing receptor in mechanotransducer-channel-mediated Ca2+ influx in hair cells of zebrafish larvae[J]. Frontiers in Physiology, 2018, 9:649
    Shih T H, Horng J L, Hwang P P, et al. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae[J]. American Journal of Physiology Cell Physiology, 2008, 295(6):C1625-C1632
    Mardones J I, Shabala L, Shabala S, et al. Fish gill damage by harmful microalgae newly explored by microelectrode ion flux estimation techniques[J]. Harmful Algae, 2018, 80:55-63
    钟硕良, 郑惠东, 陈宇锋, 等. 溴氰菊酯对4种海水养殖生物的毒性及其积累[J]. 渔业科学进展, 2017, 38(6):139-147

    Zhong S L, Zheng H D, Chen Y F, et al. The acute toxicity and bioaccumulation of deltamethrin in four species of mariculture organisms[J]. Progress in Fishery Sciences, 2017, 38(6):139-147(in Chinese)

    Dobbins L L, Usenko S, Brain R A, et al. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas[J]. Environmental Toxicology and Chemistry, 2009, 28(12):2744-2753
    Terasaki M, Makino M, Tatarazako N. Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays[J]. Journal of Applied Toxicology, 2009, 29(3):242-247
    Ding K K, Kong X T, Wang J P, et al. Side chains of parabens modulate antiandrogenic activity:In vitro and molecular docking studies[J]. Environmental Science & Technology, 2017, 51(11):6452-6460
    McDonough A A, Thompson C B. Role of skeletal muscle sodium pumps in the adaptation to potassium deprivation[J]. Acta Physiologica Scandinavica, 1996, 156(3):295-304
    Pchelintseva E, Djamgoz M B A. Mesenchymal stem cell differentiation:Control by calcium-activated potassium channels[J]. Journal of Cellular Physiology, 2018, 233(5):3755-3768
    Knudsen P K, Jensen F B. Recovery from nitrite-induced methaemoglobinaemia and potassium balance disturbances in carp[J]. Fish Physiology and Biochemistry, 1997, 16(1):1-10
    Härdig J, Andersson T, Bengtsson B E, et al. Long-term effects of bleached kraft mill effluents on red and white blood cell status, ion balance, and vertebral structure in fish[J]. Ecotoxicology and Environmental Safety, 1988, 15(1):96-106
    Haman C, Dauchy X, Rosin C, et al. Occurrence, fate and behavior of parabens in aquatic environments:A review[J]. Water Research, 2015, 68:1-11
    Flores-Lopes F, Thomaz A T. Histopathologic alterations observed in fish gills as a tool in environmental monitoring[J]. Brazilian Journal of Biology, 2011, 71(1):179-188
    Horng J L, Yu L L, Liu S T, et al. Potassium regulation in medaka (Oryzias latipes) larvae acclimated to fresh water:Passive uptake and active secretion by the skin cells[J]. Scientific Reports, 2017, 7:16215
  • 加载中
计量
  • 文章访问数:  2052
  • HTML全文浏览数:  2052
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-23

对羟基苯甲酸丙酯对食蚊鱼(Gambusia affinis)鳃和表皮K+流速的影响

    通讯作者: 宋晓红, E-mail: sxh215@163.com
    作者简介: 闫小雨(1994-),女,硕士研究生,研究方向为生态毒理学,E-mail:942666792@qq.com
  • 1. 桂林理工大学环境科学与工程学院, 桂林 541000;
  • 2. 广西环境污染控制理论与技术重点实验室, 桂林 541000;
  • 3. 岩溶地区水污染控制与用水安全保障协同创新中心, 桂林 541000;
  • 4. 广西环境污染控制理论与技术重点实验室科教结合科技创新基地, 桂林 541000
基金项目:

国家自然科学基金资助项目(51868012,51578171);广西科技计划项目(桂科AD18126018);广西“八桂学者”岗位专项经费资助项目

摘要: 食品、医药和化妆品等行业大量使用含有对羟基苯甲酸丙酯(propylparaben,PrP)的防腐剂导致其广泛分布于河流、空气和土壤等自然环境中。为探究PrP对鱼类的毒性作用,以食蚊鱼(Gambusia affinis)为模式生物,分别开展了急性毒性实验和K+流速检测实验。急性毒性实验中设置8种不同浓度的PrP溶液得到96 h半数致死浓度(96 h-LC50)和安全浓度;在K+流速检测实验中利用非损伤微测技术(non-invasive micro-test technology,NMT)分别检测在3种不同浓度(96 h-LC50/10(0.9 mg·L-1),96 h-LC50/5(1.8 mg·L-1),96 h-LC50/2(4.6 mg·L-1))的PrP溶液瞬时暴露和96 h暴露后食蚊鱼表皮和鱼鳃的K+流速变化。急性毒性实验结果表明,PrP的96 h-LC50为9.14 mg·L-1,安全浓度为2.85 mg·L-1;K+离子流速检测实验结果表明,随着PrP暴露浓度的升高,K+流速波动区间逐渐增大,且与暴露浓度成正相关;PrP瞬时暴露和96 h暴露后鱼鳃细胞均向外排出K+,具有剂量效应,K+外排量随着浓度的升高而增大;与之相反,鱼体表皮细胞向内吸收K+,K+流速波动区间随着浓度的升高而增大,呈现一定的剂量效应。上述研究结果表明,PrP对鱼体有一定的毒性,会破坏鱼体内钠钾泵的离子转运功能,PrP毒性强度与暴露时间和暴露方式有关,比较实验中鱼体2种组织的细胞,鱼体表皮细胞抵抗PrP损伤的能力更强,鱼鳃细胞对PrP暴露更敏感,鱼鳃细胞K+流速的变化可以有效指示PrP的毒性效应,为进一步研究PrP对鱼类的毒性机制提供依据。

English Abstract

参考文献 (30)

目录

/

返回文章
返回