Soni M G, Carabin I G, Burdock G A. Safety assessment of esters of p-hydroxybenzoic acid (parabens)[J]. Food and Chemical Toxicology, 2005, 43(7):985-1015
Liao C Y, Liu F, Kannan K. Occurrence of and dietary exposure to parabens in foodstuffs from the United States[J]. Environmental Science & Technology, 2013, 47(8):3918-3925
Haman C, Dauchy X, Rosin C, et al. Occurrence, fate and behavior of parabens in aquatic environments:A review[J]. Water Research, 2015, 68:1-11
Zhao X, Qiu W H, Zheng Y, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 2019, 180:43-52
Viglino L, Prévost M, Sauvé S. High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/MS[J]. Journal of Environmental Monitoring, 2011, 13(3):583-590
Haman C, Dauchy X, Rosin C, et al. Occurrence, fate and behavior of parabens in aquatic environments:A review[J]. Water Research, 2015, 68:1-11
Xue X H, Xue J C, Liu W B, et al. Trophic magnification of parabens and their metabolites in a subtropical marine food web[J]. Environmental Science & Technology, 2017, 51(2):780-789
Bereketoglu C, Pradhan A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish[J]. Science of the Total Environment, 2019, 671:129-139
Pedersen K L, Pedersen S N, Christiansen L B, et al. The preservatives ethyl-, propyl-and butylparaben are oestrogenic in an in vivo fish assay[J]. Pharmacology & Toxicology, 2000, 86(3):110-113
马莉, 史乾涛, 袁小英, 等. 内分泌干扰物对鲤鱼器官中离子平衡的影响[J]. 环境化学, 2014, 33(3):381-385 Ma L, Shi Q T, Yuan X Y, et al. The influence of endocrine disrupters on ion balance in carp organs[J]. Environmental Chemistry, 2014, 33(3):381-385(in Chinese)
Hung G Y, Wu C L, Chou Y L, et al. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos[J]. Aquatic Toxicology, 2019, 209:168-177
Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill:Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Reviews, 2005, 85(1):97-177
Baldissera M D, Souza C F, Júnior Jr, et al. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish:Impairment on renal bioenergetics[J]. Microbial Pathogenesis, 2017, 110:439-443
Hung G Y, Wu C L, Chou Y L, et al. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos[J]. Aquatic Toxicology, 2019, 209:168-177
Shabala S, Cuin T A, Shabala L, et al. Quantifying kinetics of net ion fluxes from plant tissues by non-invasive microelectrode measuring MIFE technique[J]. Methods in Molecular Biology, 2012, 913:119-134
Tannen R L, Wedell E, Moore R. Renal adaptation to a high potassium intake. The role of hydrogen ion[J]. The Journal of Clinical Investigation, 1973, 52(9):2089-2101
Lin L Y, Yeh Y H, Hung G Y, et al. Role of calcium-sensing receptor in mechanotransducer-channel-mediated Ca2+ influx in hair cells of zebrafish larvae[J]. Frontiers in Physiology, 2018, 9:649
Shih T H, Horng J L, Hwang P P, et al. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae[J]. American Journal of Physiology Cell Physiology, 2008, 295(6):C1625-C1632
Mardones J I, Shabala L, Shabala S, et al. Fish gill damage by harmful microalgae newly explored by microelectrode ion flux estimation techniques[J]. Harmful Algae, 2018, 80:55-63
钟硕良, 郑惠东, 陈宇锋, 等. 溴氰菊酯对4种海水养殖生物的毒性及其积累[J]. 渔业科学进展, 2017, 38(6):139-147 Zhong S L, Zheng H D, Chen Y F, et al. The acute toxicity and bioaccumulation of deltamethrin in four species of mariculture organisms[J]. Progress in Fishery Sciences, 2017, 38(6):139-147(in Chinese)
Dobbins L L, Usenko S, Brain R A, et al. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas[J]. Environmental Toxicology and Chemistry, 2009, 28(12):2744-2753
Terasaki M, Makino M, Tatarazako N. Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays[J]. Journal of Applied Toxicology, 2009, 29(3):242-247
Ding K K, Kong X T, Wang J P, et al. Side chains of parabens modulate antiandrogenic activity:In vitro and molecular docking studies[J]. Environmental Science & Technology, 2017, 51(11):6452-6460
McDonough A A, Thompson C B. Role of skeletal muscle sodium pumps in the adaptation to potassium deprivation[J]. Acta Physiologica Scandinavica, 1996, 156(3):295-304
Pchelintseva E, Djamgoz M B A. Mesenchymal stem cell differentiation:Control by calcium-activated potassium channels[J]. Journal of Cellular Physiology, 2018, 233(5):3755-3768
Knudsen P K, Jensen F B. Recovery from nitrite-induced methaemoglobinaemia and potassium balance disturbances in carp[J]. Fish Physiology and Biochemistry, 1997, 16(1):1-10
Härdig J, Andersson T, Bengtsson B E, et al. Long-term effects of bleached kraft mill effluents on red and white blood cell status, ion balance, and vertebral structure in fish[J]. Ecotoxicology and Environmental Safety, 1988, 15(1):96-106
Haman C, Dauchy X, Rosin C, et al. Occurrence, fate and behavior of parabens in aquatic environments:A review[J]. Water Research, 2015, 68:1-11
Flores-Lopes F, Thomaz A T. Histopathologic alterations observed in fish gills as a tool in environmental monitoring[J]. Brazilian Journal of Biology, 2011, 71(1):179-188
Horng J L, Yu L L, Liu S T, et al. Potassium regulation in medaka (Oryzias latipes) larvae acclimated to fresh water:Passive uptake and active secretion by the skin cells[J]. Scientific Reports, 2017, 7:16215