溶藻细菌HSY-03对赤潮异弯藻抗氧化系统的影响

傅丽君, 林潇雨, 杨磊, 黄靖, 李婷. 溶藻细菌HSY-03对赤潮异弯藻抗氧化系统的影响[J]. 生态毒理学报, 2021, 16(3): 302-309. doi: 10.7524/AJE.1673-5897.20200401003
引用本文: 傅丽君, 林潇雨, 杨磊, 黄靖, 李婷. 溶藻细菌HSY-03对赤潮异弯藻抗氧化系统的影响[J]. 生态毒理学报, 2021, 16(3): 302-309. doi: 10.7524/AJE.1673-5897.20200401003
Fu Lijun, Lin Xiaoyu, Yang Lei, Huang Jing, Li Ting. Effects of Algicidal Bacterium HSY-03 on Antioxidant Defense System of Heterosigma akashiwo[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 302-309. doi: 10.7524/AJE.1673-5897.20200401003
Citation: Fu Lijun, Lin Xiaoyu, Yang Lei, Huang Jing, Li Ting. Effects of Algicidal Bacterium HSY-03 on Antioxidant Defense System of Heterosigma akashiwo[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 302-309. doi: 10.7524/AJE.1673-5897.20200401003

溶藻细菌HSY-03对赤潮异弯藻抗氧化系统的影响

    作者简介: 傅丽君(1975-),女,教授,研究方向为海洋环境微生物学,E-mail:lijun_fu@sina.com
    通讯作者: 傅丽君, E-mail: lijun_fu@sina.com
  • 基金项目:

    国家自然科学基金资助项目(31400318);福建省科技厅引导性项目(2020Y0089);莆田市科技计划资助项目(2017G2012)

  • 中图分类号: X171.5

Effects of Algicidal Bacterium HSY-03 on Antioxidant Defense System of Heterosigma akashiwo

    Corresponding author: Fu Lijun, lijun_fu@sina.com
  • Fund Project:
  • 摘要: 为研究溶藻细菌HSY-03(Bacillus sp.)对赤潮异弯藻的溶藻机制,采用不同浓度HSY-03无菌上清液处理赤潮异弯藻藻细胞,测定藻细胞光合色素含量、叶绿素荧光效率、细胞内部活性氧(ROS)水平和抗氧化系统活性变化。结果表明,HSY-03无菌上清液作用24 h之后,赤潮异弯藻叶绿素a含量、类胡萝卜素含量和最大光化学效率(Fv/Fm值)均快速下降,表明藻细胞光合作用受到抑制;处理2 h后ROS含量即上升,至6 h后逐渐下降;处理12 h膜脂化过氧化产物丙二醛(MDA)含量上升,至48 h达到峰值,表明藻细胞内部氧化损伤严重;藻细胞内抗氧化系统响应被激发,抗氧化酶系统超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性不同程度上升,以清除细胞内部ROS。非酶促抗氧化系统谷胱甘肽(GSH)和抗坏血酸(AsA)含量上升,二者协同作用清除ROS。这表明,HSY-03上清液可能通过影响光合作用和作用于藻体的膜结构,引起细胞氧化损伤,最终导致藻细胞死亡。研究结果表明,HSY-03可以作为一种长期环境友好型生物因子有效防治赤潮异弯藻。
  • 加载中
  • Ji N J, Li L, Lin L X, et al. Screening for suitable reference genes for quantitative real-time PCR in Heterosigma akashiwo (Raphidophyceae)[J]. PLoS One, 2015, 10(7):e0132183
    Wang M, Chen S B, Zhou W G, et al. Algal cell lysis by bacteria:A review and comparison to conventional methods[J]. Algal Research, 2020, 46:101794
    Anderson D M, Cembella A D, Hallegraeff G M. Progress in understanding harmful algal blooms:Paradigm shifts and new technologies for research, monitoring, and management[J]. Annual Review of Marine Science, 2012, 4:143-176
    Berdalet E, Fleming L E, Gowen R, et al. Marine harmful algal blooms, human health and wellbeing:Challenges and opportunities in the 21st Century[J]. Journal of the Marine Biological Association of the United Kingdom, 2016, 96(1):61-91
    Yu X Q, Cai G J, Wang H, et al. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls[J]. Journal of Hazardous Materials, 2018, 341:138-149
    van Tol H M, Amin S A, Armbrust E V. Ubiquitous marine bacterium inhibits diatom cell division[J]. The ISME Journal, 2017, 11(1):31-42
    Li Y, Zhu H, Lei X Q, et al. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35[J]. Frontiers in Microbiology, 2015, 6:992
    Pokrzywinski K L, Tilney C L, Modla S, et al. Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates[J]. Harmful Algae, 2017, 62:127-135
    Zhang F X, Fan Y X, Zhang D Y, et al. Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense[J]. Environmental Pollution, 2020, 263(Pt A):114475
    Tan S, Hu X L, Yin P H, et al. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism[J]. Journal of Microbiology, 2016, 54(5):364-375
    谭烁. 海洋溶藻细菌诱导球形棕囊藻程序性死亡研究[D]. 广州:暨南大学, 2016:55-58 Tan S. The study of Phaeocystis globosa cell programmed death induced by marine algicidal bacteria[D]. Guangzhou:Jinan University, 2016:55

    -58(in Chinese)

    Pokrzywinski K L, Tilney C L, Modla S, et al. Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates[J]. Harmful Algae, 2017, 62:127-135
    傅丽君, 林天城, 余晓琪, 等. 抑藻细菌HSY-03的分离、鉴定及对赤潮异弯藻生长的影响[J]. 热带海洋学报, 2016, 35(3):87-93

    Fu L J, Lin T C, Yu X Q, et al. Isolation and identification of algicidal bacteria HSY-03 and its impact on Heterosigma akashiwo[J]. Journal of Tropical Oceanography, 2016, 35(3):87-93(in Chinese)

    Guillard R R, Ryther J H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran[J]. Canadian Journal of Microbiology, 1962, 8:229-239
    Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie der Pflanzen, 1975, 167(2):191-194
    Strickland J D H, Parsons T R. A Practical Handbook of Seawater Analysis[M]. Ottawa:Fisheries Research Board of Canada, 1968:1-293
    Jakubowski W, Bartosz G. 2,7-dichlorofluorescin oxidation and reactive oxygen species:What does it measure?[J]. Cell Biology International, 2000, 24(10):757-760
    Zhang H J, Lv J, Peng Y, et al. Cell death in a harmful algal bloom causing species Alexandrium tamarense upon an algicidal bacterium induction[J]. Applied Microbiology and Biotechnology, 2014, 98(18):7949-7958
    Carranco Jáuregui M E, Calvo Carrillo M C, Romo F P. Carotenoids and their antioxidant function:A review[J]. Archivos Latinoamericanos de Nutricion, 2011, 61(3):233-241
    Saha S K, Moane S, Murray P. Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18[J]. Bioresource Technology, 2013, 147:23-28
    Apel K, Hirt H. Reactive oxygen species:Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399
    Maughan S C, Pasternak M, Cairns N, et al. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2331-2336
    Sohal R S, Orr W C. The redox stress hypothesis of aging[J]. Free Radical Biology & Medicine, 2012, 52(3):539-555
    Hippeli S, Heiser I, Elstner E F. Activated oxygen and free oxygen radicals in pathology:New insights and analogies between animals and plants[J]. Plant Physiology and Biochemistry, 1999, 37(3):167-178
    张化俊, 彭云, 张夙, 等. 溶藻细菌BS01产二异丁氧基苯基对塔玛亚历山大藻生长的影响[J]. 微生物学报, 2015, 55(7):834-842

    Zhang H J, Peng Y, Zhang S, et al. Algicidal effect of (2-isobutoxyphenyl) amine on Alexandrium tamarense[J]. Acta Microbiologica Sinica, 2015, 55(7):834-842(in Chinese)

    Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology, 2006, 141(2):391-396
    Tan S, Hu X L, Yin P H, et al. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism[J]. Journal of Microbiology, 2016, 54(5):364-375
    吴培枫, 韩光耀, 谢丽玲, 等. 溶藻菌Halomona sp. DH-e无菌滤液对东海原甲藻抗氧化系统的影响及急性毒性检验[J]. 海洋环境科学, 2018, 37(2):228-232

    Wu P F, Han G Y, Xie L L, et al. Effects of the Halomona sp. DH-e aseptic filtrate on the antioxidant enzyme system of Prorocentrum donghaiense and its acute toxicity[J]. Marine Environmental Science, 2018, 37(2):228-232(in Chinese)

    胡晓丽. 菌株Y4胞外活性物质对球形棕囊藻的氧化损伤和光合抑制[D]. 广州:暨南大学, 2015:29-34 Hu X L. Photosynthetic inhibition and oxidative stress in the toxic Phaeocystis globosa induced by algicidal substance from Bacillus sp. strain Y4[D]. Guangzhou:Jinan University, 2015

    :29-34(in Chinese)

  • 加载中
计量
  • 文章访问数:  1935
  • HTML全文浏览数:  1935
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-01

溶藻细菌HSY-03对赤潮异弯藻抗氧化系统的影响

    通讯作者: 傅丽君, E-mail: lijun_fu@sina.com
    作者简介: 傅丽君(1975-),女,教授,研究方向为海洋环境微生物学,E-mail:lijun_fu@sina.com
  • 1. 福建省新型污染物生态毒理效应与控制重点实验室, 莆田 351100;
  • 2. 莆田学院环境与生物工程学院, 莆田 351100;
  • 3. 福建农林大学生命科学学院, 福州 350002
基金项目:

国家自然科学基金资助项目(31400318);福建省科技厅引导性项目(2020Y0089);莆田市科技计划资助项目(2017G2012)

摘要: 为研究溶藻细菌HSY-03(Bacillus sp.)对赤潮异弯藻的溶藻机制,采用不同浓度HSY-03无菌上清液处理赤潮异弯藻藻细胞,测定藻细胞光合色素含量、叶绿素荧光效率、细胞内部活性氧(ROS)水平和抗氧化系统活性变化。结果表明,HSY-03无菌上清液作用24 h之后,赤潮异弯藻叶绿素a含量、类胡萝卜素含量和最大光化学效率(Fv/Fm值)均快速下降,表明藻细胞光合作用受到抑制;处理2 h后ROS含量即上升,至6 h后逐渐下降;处理12 h膜脂化过氧化产物丙二醛(MDA)含量上升,至48 h达到峰值,表明藻细胞内部氧化损伤严重;藻细胞内抗氧化系统响应被激发,抗氧化酶系统超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性不同程度上升,以清除细胞内部ROS。非酶促抗氧化系统谷胱甘肽(GSH)和抗坏血酸(AsA)含量上升,二者协同作用清除ROS。这表明,HSY-03上清液可能通过影响光合作用和作用于藻体的膜结构,引起细胞氧化损伤,最终导致藻细胞死亡。研究结果表明,HSY-03可以作为一种长期环境友好型生物因子有效防治赤潮异弯藻。

English Abstract

参考文献 (29)

目录

/

返回文章
返回