-
人类社会正处在人工智能跨越式发展的关键节点,人工智能及其应用是环境工程领域未来创新发展的关键方向之一。习近平总书记2023年7月17日在全国生态环境保护大会上的重要讲话指出:“深化人工智能等数字技术应用,构建美丽中国数字化治理体系,建设绿色智慧的数字生态文明”。中共中央、国务院印发的《数字中国建设整体布局规划》也将“推动生态环境智慧治理,加快构建智慧高效的生态环境信息化体系”确定为数字中国赋能经济社会发展的关键内容之一。探索新型人工智能技术在环境工程领域的赋能形态、拓展其应用边界,是环境工程学科发展的必经过程,更是响应国家“建设绿色智慧的数字生态文明”重大需求的关键任务。
生成式人工智能 (generative artificial intelligence) 是指一类能够创造新内容的人工智能系统,它们能够基于大量的学习理解内容模式,以生成新的内容,包括但不限于文字、图像、视频、音频等,并且具备理解、分析、规划和一定的泛化能力。近两年,以ChatGPT为代表的“大语言模型”井喷式发展,大语言模型背后的生成式人工智能技术被公认为是当前最具有应用前景的人工智能技术,越来越丰富的新应用形态迅速涌现。2023年5月23日国家互联网信息办公室审议通过了《生成式人工智能服务暂行管理办法》,提出鼓励生成式人工智能技术在各行业、各领域的创新应用,探索优化应用场景,构建应用生态体系等,为我国生成式人工智能发展和应用指引方向。
生成式人工智能发展为人工智能在环境工程领域的应用带来新的机遇。借助生成式人工智能技术高效的信息处理与分析能力和强大的多模态信息处理能力,环境工程领域发展可基于“AI for Science”[1]的理念,在高复杂度、高知识密度、高重复性等研究工作场景下助力科学家做出更快、更准确的决策,推动科学进步和创新。
生成式人工智能在环境工程中的应用前瞻
Prospective applications of generative artificial intelligence in Environmental Engineering
-
摘要: 人类社会正处在人工智能跨越式发展的关键节点,以大语言模型为代表的新型生成式人工智能技术为科学研究和社会治理带来新的机遇。与此同时,系统性复杂环境问题日益凸显,使得环境工程学科亟需更加智能化的研究方式、模式和范式。探索新型生成式人工智能技术在环境工程领域的赋能形态、拓展其应用边界,是环境工程学科发展的必经过程,更是响应国家“建设绿色智慧的数字生态文明”重大需求的关键任务。本研究旨在通过分析环境工程智能化需求变化、挖掘人工智能环境工程领域应用现状和趋势,从而探索新型生成式人工智能在环境工程领域的应用场景、方法和技术,从专业基座模型构建与适应研究、需求场景导向的多功能智能辅助应用和基于复合工作流理解与重构的复杂任务智能体三个层次逐层递进,提出我国环境工程的智能化发展关键战略方向。本研究为我国加快推动生成式人工智能在环境工程领域的应用研究,成为该方向的先行者和领导者而助力。Abstract: Human society is currently at a critical juncture in the revolutionary development of artificial intelligence (AI), with new generative AI technologies, represented by large language models, bringing new opportunities for scientific research and social governance. Concurrently, the increasingly prominent issues of systemic complexity in environmental contexts necessitate a more intelligent approach to research, methodologies, and paradigms within the field of Environmental Engineering. Exploring the empowering forms and expanding the application boundaries of new generative AI technologies in Environmental Engineering is an essential process for the development of the discipline and a key task in responding to the national demand for building a “green and intelligent digital ecological civilization.” This paper aimed to analyze changes in the intelligent demands of Environmental Engineering, explore the current status and trends of AI applications in this field, and investigate the application scenarios, methods, and technologies of new generative AI in Environmental Engineering. It progressed through three levels: constructing and adapting foundational models, developing multifunctional intelligent support applications driven by demand scenarios, and understanding and reconstructing complex tasks based on combined workflows. The study proposes key strategic directions for the intelligent evolution of Environmental Engineering in China, aiming to accelerate the country's research into applying generative AI in this field and establish its leadership and pioneering status.
-
[1] 杨小康, 许岩岩, 陈露, 等. AI for science: 智能化科学设施变革基础研究[J]. 中国科学院院刊, 2024, 39(1): 59-69. [2] KINGMA D P, WELLING M. Auto-encoding variational bayes[M/OL]. arXiv, 2022. [2024-04-08]. http://arxiv.org/abs/1312.6114. [3] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[M/OL]. arXiv, 2014. [2024-04-08]. http://arxiv.org/abs/1406.2661. [4] MITCHELL M. Debates on the nature of artificial general intelligence[J]. Science, 2024, 383(6689): eado7069. doi: 10.1126/science.ado7069 [5] TRIGUERO I, MOLINA D, POYATOS J, et al. General purpose artificial intelligence systems (GPAIS): Properties, definition, taxonomy, societal implications and responsible governance[J]. Information Fusion, 2024, 103: 102135. doi: 10.1016/j.inffus.2023.102135 [6] 王旭, 董欣. 数据融合驱动学科交叉, 赋能环境工程管理与研究创新——“环境工程基础数据与模型”专刊[J]. 环境工程, 2022, 40(6): 3-4. [7] 关琳, 王让会, 刘春伟, 等. 祁连山自然保护区生态环境大数据管理模式的探讨[J]. 测绘通报, 2023(7): 97-106. [8] 叶林, 吴兵, 蒋丽娟, 等. 融合大数据分析的环境工程微生物学教学改革探索[J]. 高等工程教育研究, 2024(1): 54-57. [9] 程婉清, 袁定波, 熊鹏, 等. 基于多种机器学习算法的水质指数预测模型构建与评估[J]. 环境科学学报, 2023, 43(11): 144-152. [10] 侯俊雄, 李琦, 朱亚杰, 等. 融机器学习与WRF大气模式的PM2.5预报方法[J]. 测绘科学, 2018, 43(2): 114-120+141. [11] 赵宗慈, 罗勇, 黄建斌. 全球气候指标、气候影响驱动因子与全球变暖[J]. 气候变化研究进展, 2024, 20(3): 1-5. [12] 王柯, 张建军, 邢哲, 等. 我国生态问题鉴定与国土空间生态保护修复方向[J]. 生态学报, 2022, 42(18): 7685-7696. [13] 滕应, 骆永明, 沈仁芳, 等. 场地土壤-地下水污染物多介质界面过程与调控研究进展与展望[J]. 土壤学报, 2020, 57(6): 1333-1340. [14] QI J, GUO J, WANG P, et al. Incorporating generative AI agents into socio-economic metabolism modelling: The next frontier[J]. Resources, Conservation and Recycling, 2024, 207: 107670. doi: 10.1016/j.resconrec.2024.107670 [15] KOLDUNOV N, JUNG T. Local climate services for all, courtesy of large language models[J]. Communications Earth & Environment, 2024, 5(1): 1-4. [16] LI H, LIU J, WANG Z, et al. LITE: Modeling environmental ecosystems with multimodal large language models[M/OL]. arXiv, 2024. [2024-04-06]. http://arxiv.org/abs/2404.01165.