-
我国是世界上最大的养猪国家,近十年来每年饲养超过5×109头猪,据统计2022年中国肉猪出栏量为近7×109头,所产生的废水量相当于49×109人产生的生活污水排放量[1-2]。大多数规模化养猪场的废水经过厌氧池、消化池等处理后产生的养猪沼液(digested piggery wastewater,DPW),具有碳氮比低、NH4+-N含量高、微生物降解能力差等特点[3]。此外,养殖过程中广泛使用的各种抗生素并不能被牲畜充分吸收利用,大约有75%的抗生素释放到环境中[4],导致养猪废水中高浓度的抗生素残留[5],使养猪废水的处理面临严峻挑战,对我国污水处理和生态环境造成严重压力。
曝气生物滤池(biological aerated filter, BAF)是一种集过滤、吸附、生物降解于一体的污水处理工艺,具有高效率、低成本等优点[5-6],已经被广泛应用于各种废水的处理。有研究表明,曝气生物滤池不仅可以高效去除氮、磷营养盐[5, 7],对重金属[8]、农药[9]、抗生素[5]、药物及个人护理品(pharmaceutical and personal care products, PPCPs)[10]等各种毒害污染物也表现出很好的去除效果。钟鸣扬[7]利用竹炭-陶粒组合填料的曝气生物滤池对养猪沼液进行处理,TP、COD和NH4+-N的去除率均达到80%以上。CHEN等[5]以弹性固体材料和砾石为填料构建曝气生物滤池,用其处理养猪废水,结果表明,曝气生物滤池对常规污染物的去除率超过80%,对9种抗生素的去除率达到82.1%~100%。填料是生物滤池的核心组成部分,能够吸附污染物,并为生物膜提供附着场所,其性能直接影响污染物的去除效果[11],常用的填料有陶粒[7, 9]、生物炭[6]、沸石[12]、聚氨酯泡沫[8]等,陶粒、沸石和砾石填料价格低廉,是多种水处理工艺的常用填料。ZHOU等[13]通过持续添加人工废水评估陶粒、沸石、砾石介质在累积生物量和渗流特性之间的相互作用,结果表明与沸石、砾石两种材料相比,陶粒的形状导致其水头损失大,但陶粒具有更高的水力效率,生物膜生长产生更小的死区和短路。需要进一步探究这3种填料在污染物去除效果及微生物组成的差异。
目前曝气生物滤池已经应用于养殖废水处理[5, 7],去除效果受碳源不足和缺氧区域不明显的影响[14]。已有研究表明,在人工湿地[15]、SBR系统[16]、MBBR系统[17]等污水处理系统中通过外部添加碳水化合物来调节进水C/N比可以强化微生物的反硝化能力以增强处理效果。本文以养猪沼液为处理对象,利用砾石、陶粒、沸石3组填料分别构建三级串联式曝气生物滤池,考察不同进水C/N比下对养猪沼液中氮、磷营养盐及抗生素的去除效果,并对填料生物膜上的微生物群落进行分析。研究结果可优化曝气生物滤池处理养猪废水的工艺和参数设计,为我国养殖废水的治理提供参考和借鉴。
不同填料曝气生物滤池对养猪沼液的处理效果及微生物群落响应
Treatment effect of digested piggery wastewater by biological aerated filter with different fillers and microbial community response
-
摘要: 本文利用陶粒、沸石和砾石为填料分别构建3组三级串联式曝气生物滤池,考察不同进水碳氮比条件下生物滤池对养猪沼液(DPW)中COD、NH4+-N、TN、TP及抗生素的处理效果与差异,并通过16s rRNA高通量测序对填料生物膜进行分析。结果表明:以陶粒为填料的曝气生物滤池对污染物的去除效果最佳,对养猪沼液中COD、NH4+-N、TN、TP的平均去除率分别为93.77%~94.14%、99.44%~99.89%、64.63%~85.23%、92.68%~95.74%,对SMZ2、OTC、TC、CFX、OFX的平均去除率分别在94.72%~97.07%、94.85%~95.27%、83.17%~92.05%、47.62%~65.02%、52.76%~69.45%。进水碳氮比提高后,3组曝气生物滤池对TN的处理效率显著提高(P<0.01),对SMZ2、TC和CFX的去除效率也有所提高(P<0.05),但对NH4+-N和TP的去除无显著的提升;16S rRNA 高通量测序分析表明,3组滤池填料生物膜上的细菌中变形杆菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)相对丰度较高;Thauera属、Zoogloea属、Flavobacterium属和Arcobacter属为优势属,其中以反硝化为主的Thauera属在陶粒组相对丰度最高,达到36.27%,使陶粒组有良好污染物去除效率。该研究结果可为利用生物滤池技术处理养殖废水提供参考和借鉴。
-
关键词:
- 曝气生物滤池(BAF) /
- 养猪沼液(DPW) /
- 抗生素 /
- 微生物群落
Abstract: In this study, three groups of three-stage and tandem biological aerated filters (BAFs) were constructed with ceramic, zeolites and gravels as fillers, respectively. Under the conditions with different C/N ratio in BAF influent, the treatment effects and differences of COD、NH4+-N、TN、TP and antibiotic in digested piggery wastewater (DPW) were investigated. The16s rRNA high-throughput sequencing was used to analyze the biofilms of BAFs. The results showed that the BAF with ceramic as filler had the best effect on removing pollutants, and the average removal rates of COD, NH4+-N, TN, and TP in DPW were 93.77%~94.14%, 99.44%~99.89%, 64.63%~85.23%, and 92.68%~95.74%, respectively; and the average removal rates of SMZ2, OTC, TC, CFX, and OFX ranged from 94.72% to 97.07%, 94.85% to 95.27%, 83.17% to 92.05%, 47.62% to 65.02%, and 52.76% to 69.45%, respectively. After the C/N ratio in BAF influent increased, the treatment efficiency of TN by the three groups of BAFs increased significantly ( P<0.01), and the removal rates of SMZ2, TC and CFX also increased ( P<0.05), while the removal rates of NH4+-N and TP increased insignificantly. According to the 16S rRNA sequence analysis, the relative abundance of Proteobacteria and Bacteroidetes was high in the bacteria on the biofilm of the three groups of BAF; Thauera, Zoogloea, Flavobacterium and Arcobacter were the dominant bacteria in the bacteria on the biofilm of the three groups of BAF, of which the genus of Thauera, being mainly the denitrifying bacteria, had the highest relative abundance of 36.27% in the ceramic group, leading to its good removal efficiency of pollutant. This study can provide a reference for the treatment of aquaculture wastewater using biofilter technology. -
表 1 不同阶段进水的污染物质量浓度
Table 1. Pollutant concentrations in influent water at different stages
mg·L−1 阶段 TN NH4+-N TP COD 阶段Ⅰ 96.58±8.39 87.55±9.84 20.09±3.01 113.51±14.58 阶段Ⅱ 102.00±6.99 95.37±7.99 26.15±1.03 629.00±25.01 阶段Ⅲ 269.17±14.62 251.35±14.15 60.65±1.50 1426.63 ±62.29阶段Ⅳ 287.60±8.49 277.57±9.43 61.77±4.03 1315.92 ±67.57表 2 BAFs中微生物群落的多样性和丰富度估算
Table 2. Estimation of diversity and abundance of microbial communities in BAFs
样品 Shannon Simpson Ace Chao Coverage/% W0 4.99±0.03 0.03±0.002 1290.54 ±6.531267.19 ±14.1698.36 TL 3.45±0.23 0.14±0.05 735.13±66.80 688.84±56.22 99.09 FS 4.08±0.47 0.06±0.04 874.38±156.39 879.54±166.96 98.83 LS 4.38±0.07 0.04±0.01 967.67±153.27 940.47±87.00 98.79 -
[1] SUN X, ZHU B K, ZHANG S, et al. New indices system for quantifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978–2018[J]. Science of the Total Environment, 2022, 804: 150180. doi: 10.1016/j.scitotenv.2021.150180 [2] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2023. [3] WANG S, WANG L, DENG L W, et al. Performance of autotrophic nitrogen removal from digested piggery wastewater[J]. Bioresource Technology, 2017, 241: 465-472. doi: 10.1016/j.biortech.2017.05.153 [4] ZHANG J M, XIA A, YAO D X, et al. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production[J]. Bioresource Technology, 2022, 363: 127891. doi: 10.1016/j.biortech.2022.127891 [5] CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238: 70-77. doi: 10.1016/j.biortech.2017.04.023 [6] XIN X, LIU S Q, QIN J W, et al. Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment[J]. Bioprocess and Biosystems Engineering, 2021, 44(8): 1741-1753. doi: 10.1007/s00449-021-02557-z [7] 钟鸣扬. 竹炭-陶粒组合填料曝气生物滤池对养猪废水的处理性能研究[D]. 阿拉尔: 塔里木大学, 2024. [8] 瞿艳芝, 李谦, 叶正芳, 等. 曝气生物滤池处理模拟选矿废水研究[J]. 中国有色冶金, 2018, 47(2): 79-83. [9] 朱乐辉, 邱俊, 徐星, 等. Fenton氧化/厌氧/好氧工艺处理苯胺农药废水[J]. 中国给水排水, 2009, 25(2): 58-61. [10] 董伟羊. 曝气生物滤池联合中性光Fenton降解水中典型医药品污染物的效果及机理研究[D]. 苏州: 苏州大学, 2020. [11] WU Q D, CHEN C, ZHANG Y L, et al. Safe purification of rural drinking water by biological aerated filter coupled with ultrafiltration[J]. Science of the Total Environment, 2023, 868: 161632. doi: 10.1016/j.scitotenv.2023.161632 [12] 郝添翼, 曲婷, 王海媚, 等. 曝气生物滤池滤料改进研究[J]. 应用化工, 2023, 52(7): 2112-2116. [13] ZHOU Y C, WENG S C, ZHANG Y P, et al. Experimental study of seepage flow properties with biofilm development in porous media with different filter morphologies[J]. Journal of Hydrology, 2020, 591: 125596. doi: 10.1016/j.jhydrol.2020.125596 [14] 李怡, 朱恒亮. C/N对A~2O耦合生物曝气滤池脱氮除磷的影响[J]. 水处理技术, 2018, 44(9): 120-123. [15] LU S L, HU H Y, SUN Y X, et al. Effect of carbon source on the denitrification in constructed wetlands[J]. Journal of Environmental Sciences, 2009, 21(8): 1036-1043. doi: 10.1016/S1001-0742(08)62379-7 [16] 陈翠忠, 李俊峰, 刘生宝, 等. 间歇式活性污泥法(SBR)系统碳氮比对同步硝化反硝化微生物群落分布及脱氮效能的影响[J]. 环境化学, 2021, 40(11): 3598-3607. [17] 曾锦涌, 柯水洲, 袁辉洲, 等. 碳氮比对MBBR系统脱氮性能及微生物群落的影响[J]. 环境工程, 2024, 42(4): 100-110. [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 132-284. [19] TSO J, DUTTA S, INAMDAR S, et al. Simultaneous analysis of free and conjugated estrogens, sulfonamides, and tetracyclines in runoff water and soils using solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2213-2222. doi: 10.1021/jf104355x [20] 李冬, 郭跃洲, 劳会妹, 等. 进水碳氮比对缺氧/好氧SBR亚硝化系统的影响[J]. 哈尔滨工业大学学报, 2019, 51(2): 1-7. [21] 曾玉, 曾敏静, 程媛媛, 等. 好氧颗粒污泥的培养及处理低碳氮比废水效果[J]. 有色金属科学与工程, 2021, 12(4): 104-111. [22] 姜姗, 黄锦楼, 阚凤玲, 等. 曝气条件对生态滤池处理农村生活污水的影响[J]. 环境工程学报, 2023, 17(4): 1252-1262. [23] PANG Y M, WANG J L. Various electron donors for biological nitrate removal: A review[J]. The Science of the total environment, 2021, 794: 148699. doi: 10.1016/j.scitotenv.2021.148699 [24] 董宝刚. 间歇曝气序批式反应器处理养猪沼液的特性研究[D]. 上海: 上海师范大学, 2017. [25] 杨慎华, 李家麟, 王晓玲, 等. 进水碳氮比对生物膜微生物群落及系统脱氮性能的影响[J]. 环境工程, 2019, 37(11): 75-80. [26] MIQUELETO A P, DOLOSIC C C, POZZI E, et al. Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment[J]. Bioresource Technology, 2010, 101(4): 1324-1330. doi: 10.1016/j.biortech.2009.09.026 [27] RAMASAHAYAM S K, GUZMAN L, GUNAWAN G, et al. A comprehensive review of phosphorus removal technologies and processes[J]. Journal of Macromolecular Science, Part A - Pure and Applied Chemistry, 2014, 51(6): 538-545. doi: 10.1080/10601325.2014.906271 [28] BUNCE J T, NDAM E, OFITERU I D, et al. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems[J]. Frontiers in Environmental Science, 2018, 6(8): 1-15. [29] 齐冉, 张灵, 杨帆, 等. 水力停留时间对潜流湿地净化效果影响及脱氮途径解析[J]. 环境科学, 2021, 42(9): 4296-4303. [30] 王明玉, 朱琳, 王鹏. 净水除磷基质的综合筛选与长效建模预测[J]. 环境工程技术学报, 2022, 12(1): 119-126. [31] 柯德峰. 人工湿地基质的筛选及其除磷机理研究[D]. 武汉: 武汉理工大学, 2019. [32] 张海, 张旭, 梁军, 等. 处理含油地表水体的潜流湿地填料筛选及其性能评价[J]. 环境科学学报, 2007(7): 1121-1126. [33] 巩有奎, 王一冰, 孙洪伟. 生物反应器电子受体反硝化聚磷PAOs-GAOs竞争及N_2O释放特性[J]. 农业工程学报, 2020, 36(23): 241-249. [34] 陶虎春, 佟浩, 王健, 等. 碳氮比对A/O-MBR工艺中污水脱氮除磷的影响研究[J]. 北京大学学报(自然科学版), 2022, 58(4): 680-686. [35] 李盟军, 申健, 姚建武, 等. 某规模化猪场废水中抗生素污染特征及生态风险评估[J]. 农业环境科学学报, 2021, 40(4): 884-893. [36] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. doi: 10.1007/s10311-013-0404-8 [37] SON H J, YOOM H S, RYU D C, et al. Characteristics of adsorption and biodegradation of tetracycline antibiotics by granular activated carbon and biofiltration process[J]. Journal of Environmental Science International, 2014, 23(3): 379-386. doi: 10.5322/JESI.2014.23.3.379 [38] 李佳泽, 吴宝利, 刘富荣, 等. BAF工艺深度处理四环素类制药废水研究[J]. 中国给水排水, 2022, 38(5): 24-31. [39] 唐佳, 陈茜, 覃牧川, 等. 4种典型抗生素在反硝化体系中的去除特性[J]. 环境科学, 2022, 43(6): 3204-3210. [40] 陆玉, 钟慧, 丑三涛, 等. 乙酸驯化对厌氧污泥微生物群落结构及发酵特性的影响[J]. 环境科学学报, 2018, 38(5): 1835-1842. [41] XU L N, ZHANG B, PENG X W, et al. Dynamic variations of microbial community structure in myriophyllum aquaticum constructed wetlands in response to different NH4+-N concentrations[J]. Process Biochemistry, 2020, 93: 55-62. doi: 10.1016/j.procbio.2020.02.028 [42] ZHANG M J, QIAO S, SHAO D H, et al. Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(1): 94-104. doi: 10.1002/jctb.5326 [43] YANG X Y, HE Q, GUO F C, et al. Nanoplastics disturb nitrogen removal in constructed wetlands: Responses of microbes and macrophytes[J]. Environmental Science & Technology, 2020, 54(21): 14007-14016. [44] LI Y Q, ZHANG C M, YUAN Q Q, et al. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm[J]. Chemosphere, 2023, 335: 139151. doi: 10.1016/j.chemosphere.2023.139151 [45] ALVAREZ A, SAEZ J M, COSTA J S D, et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals[J]. Chemosphere, 2017, 166: 41-62. doi: 10.1016/j.chemosphere.2016.09.070 [46] 李静, 张宝刚, 刘青松, 等. 导电材料强化微生物直接种间电子传递产甲烷的研究进展[J]. 微生物学报, 2021, 61(6): 1507-1524. [47] HU Y Y, WANG X F, ZHANG S H, et al. Microbial response behavior to powdered activated carbon in high-solids anaerobic digestion of kitchen waste: Metabolism and functional prediction analysis[J]. Journal of Environmental Management, 2023, 337: 117756. doi: 10.1016/j.jenvman.2023.117756 [48] GUO B, ZHANG Y D, YU N, et al. Impacts of conductive materials on microbial community during syntrophic propionate oxidization for biomethane recovery[J]. Water Environment Research, 2021, 93(1): 84-93. doi: 10.1002/wer.1357 [49] ZHAO Y, HUANG J, ZHAO H, et al. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates[J]. Bioresource Technology, 2013, 143: 439-446. doi: 10.1016/j.biortech.2013.06.020 [50] 谭丰佚, 刘新颖, 党岩, 等. 有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化[J]. 环境工程学报, 2024, 18(4): 1183-1191. [51] XIONG W, WANG S J, JIN Y, et al. Insights into nitrogen and phosphorus metabolic mechanisms of algal-bacterial aerobic granular sludge via metagenomics: Performance, microbial community and functional genes[J]. Bioresource Technology, 2023, 369: 128442. doi: 10.1016/j.biortech.2022.128442 [52] HUANG C, LIU Q, LI Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research, 2021, 188: 116526. doi: 10.1016/j.watres.2020.116526 [53] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001 [54] XIE C H, YOKOTA A. Zoogloea oryzae sp nov. , a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov. , sp nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 619-624. [55] 李龙山, 倪细炉, 李昌晓, 等. 生活污水对土壤及湿地植物根际细菌群落的影响[J]. 农业环境科学学报, 2016, 35(11): 2163-2170. [56] LIU X Y, LI R J, CHEN R, et al. Formation of filamentous fungal pellets in aerobic granular sludge via reducing temperature and dissolved oxygen: Characteristics of filamentous fungi and denitrification performance[J]. Bioresource Technology, 2021, 332: 339. [57] HUANG X, DONG W Y, WANG H J, et al. Sludge alkaline fermentation enhanced anaerobic- multistage anaerobic/oxic (A-MAO) process to treat low C/N municipal wastewater: Nutrients removal and microbial metabolic characteristics[J]. Bioresource Technology, 2020, 302: 122583. doi: 10.1016/j.biortech.2019.122583