[1] SUN X, ZHU B K, ZHANG S, et al. New indices system for quantifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978–2018[J]. Science of the Total Environment, 2022, 804: 150180. doi: 10.1016/j.scitotenv.2021.150180
[2] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2023.
[3] WANG S, WANG L, DENG L W, et al. Performance of autotrophic nitrogen removal from digested piggery wastewater[J]. Bioresource Technology, 2017, 241: 465-472. doi: 10.1016/j.biortech.2017.05.153
[4] ZHANG J M, XIA A, YAO D X, et al. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production[J]. Bioresource Technology, 2022, 363: 127891. doi: 10.1016/j.biortech.2022.127891
[5] CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238: 70-77. doi: 10.1016/j.biortech.2017.04.023
[6] XIN X, LIU S Q, QIN J W, et al. Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment[J]. Bioprocess and Biosystems Engineering, 2021, 44(8): 1741-1753. doi: 10.1007/s00449-021-02557-z
[7] 钟鸣扬. 竹炭-陶粒组合填料曝气生物滤池对养猪废水的处理性能研究[D]. 阿拉尔: 塔里木大学, 2024.
[8] 瞿艳芝, 李谦, 叶正芳, 等. 曝气生物滤池处理模拟选矿废水研究[J]. 中国有色冶金, 2018, 47(2): 79-83.
[9] 朱乐辉, 邱俊, 徐星, 等. Fenton氧化/厌氧/好氧工艺处理苯胺农药废水[J]. 中国给水排水, 2009, 25(2): 58-61.
[10] 董伟羊. 曝气生物滤池联合中性光Fenton降解水中典型医药品污染物的效果及机理研究[D]. 苏州: 苏州大学, 2020.
[11] WU Q D, CHEN C, ZHANG Y L, et al. Safe purification of rural drinking water by biological aerated filter coupled with ultrafiltration[J]. Science of the Total Environment, 2023, 868: 161632. doi: 10.1016/j.scitotenv.2023.161632
[12] 郝添翼, 曲婷, 王海媚, 等. 曝气生物滤池滤料改进研究[J]. 应用化工, 2023, 52(7): 2112-2116.
[13] ZHOU Y C, WENG S C, ZHANG Y P, et al. Experimental study of seepage flow properties with biofilm development in porous media with different filter morphologies[J]. Journal of Hydrology, 2020, 591: 125596. doi: 10.1016/j.jhydrol.2020.125596
[14] 李怡, 朱恒亮. C/N对A~2O耦合生物曝气滤池脱氮除磷的影响[J]. 水处理技术, 2018, 44(9): 120-123.
[15] LU S L, HU H Y, SUN Y X, et al. Effect of carbon source on the denitrification in constructed wetlands[J]. Journal of Environmental Sciences, 2009, 21(8): 1036-1043. doi: 10.1016/S1001-0742(08)62379-7
[16] 陈翠忠, 李俊峰, 刘生宝, 等. 间歇式活性污泥法(SBR)系统碳氮比对同步硝化反硝化微生物群落分布及脱氮效能的影响[J]. 环境化学, 2021, 40(11): 3598-3607.
[17] 曾锦涌, 柯水洲, 袁辉洲, 等. 碳氮比对MBBR系统脱氮性能及微生物群落的影响[J]. 环境工程, 2024, 42(4): 100-110.
[18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 132-284.
[19] TSO J, DUTTA S, INAMDAR S, et al. Simultaneous analysis of free and conjugated estrogens, sulfonamides, and tetracyclines in runoff water and soils using solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2213-2222. doi: 10.1021/jf104355x
[20] 李冬, 郭跃洲, 劳会妹, 等. 进水碳氮比对缺氧/好氧SBR亚硝化系统的影响[J]. 哈尔滨工业大学学报, 2019, 51(2): 1-7.
[21] 曾玉, 曾敏静, 程媛媛, 等. 好氧颗粒污泥的培养及处理低碳氮比废水效果[J]. 有色金属科学与工程, 2021, 12(4): 104-111.
[22] 姜姗, 黄锦楼, 阚凤玲, 等. 曝气条件对生态滤池处理农村生活污水的影响[J]. 环境工程学报, 2023, 17(4): 1252-1262.
[23] PANG Y M, WANG J L. Various electron donors for biological nitrate removal: A review[J]. The Science of the total environment, 2021, 794: 148699. doi: 10.1016/j.scitotenv.2021.148699
[24] 董宝刚. 间歇曝气序批式反应器处理养猪沼液的特性研究[D]. 上海: 上海师范大学, 2017.
[25] 杨慎华, 李家麟, 王晓玲, 等. 进水碳氮比对生物膜微生物群落及系统脱氮性能的影响[J]. 环境工程, 2019, 37(11): 75-80.
[26] MIQUELETO A P, DOLOSIC C C, POZZI E, et al. Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment[J]. Bioresource Technology, 2010, 101(4): 1324-1330. doi: 10.1016/j.biortech.2009.09.026
[27] RAMASAHAYAM S K, GUZMAN L, GUNAWAN G, et al. A comprehensive review of phosphorus removal technologies and processes[J]. Journal of Macromolecular Science, Part A - Pure and Applied Chemistry, 2014, 51(6): 538-545. doi: 10.1080/10601325.2014.906271
[28] BUNCE J T, NDAM E, OFITERU I D, et al. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems[J]. Frontiers in Environmental Science, 2018, 6(8): 1-15.
[29] 齐冉, 张灵, 杨帆, 等. 水力停留时间对潜流湿地净化效果影响及脱氮途径解析[J]. 环境科学, 2021, 42(9): 4296-4303.
[30] 王明玉, 朱琳, 王鹏. 净水除磷基质的综合筛选与长效建模预测[J]. 环境工程技术学报, 2022, 12(1): 119-126.
[31] 柯德峰. 人工湿地基质的筛选及其除磷机理研究[D]. 武汉: 武汉理工大学, 2019.
[32] 张海, 张旭, 梁军, 等. 处理含油地表水体的潜流湿地填料筛选及其性能评价[J]. 环境科学学报, 2007(7): 1121-1126.
[33] 巩有奎, 王一冰, 孙洪伟. 生物反应器电子受体反硝化聚磷PAOs-GAOs竞争及N_2O释放特性[J]. 农业工程学报, 2020, 36(23): 241-249.
[34] 陶虎春, 佟浩, 王健, 等. 碳氮比对A/O-MBR工艺中污水脱氮除磷的影响研究[J]. 北京大学学报(自然科学版), 2022, 58(4): 680-686.
[35] 李盟军, 申健, 姚建武, 等. 某规模化猪场废水中抗生素污染特征及生态风险评估[J]. 农业环境科学学报, 2021, 40(4): 884-893.
[36] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. doi: 10.1007/s10311-013-0404-8
[37] SON H J, YOOM H S, RYU D C, et al. Characteristics of adsorption and biodegradation of tetracycline antibiotics by granular activated carbon and biofiltration process[J]. Journal of Environmental Science International, 2014, 23(3): 379-386. doi: 10.5322/JESI.2014.23.3.379
[38] 李佳泽, 吴宝利, 刘富荣, 等. BAF工艺深度处理四环素类制药废水研究[J]. 中国给水排水, 2022, 38(5): 24-31.
[39] 唐佳, 陈茜, 覃牧川, 等. 4种典型抗生素在反硝化体系中的去除特性[J]. 环境科学, 2022, 43(6): 3204-3210.
[40] 陆玉, 钟慧, 丑三涛, 等. 乙酸驯化对厌氧污泥微生物群落结构及发酵特性的影响[J]. 环境科学学报, 2018, 38(5): 1835-1842.
[41] XU L N, ZHANG B, PENG X W, et al. Dynamic variations of microbial community structure in myriophyllum aquaticum constructed wetlands in response to different NH4+-N concentrations[J]. Process Biochemistry, 2020, 93: 55-62. doi: 10.1016/j.procbio.2020.02.028
[42] ZHANG M J, QIAO S, SHAO D H, et al. Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(1): 94-104. doi: 10.1002/jctb.5326
[43] YANG X Y, HE Q, GUO F C, et al. Nanoplastics disturb nitrogen removal in constructed wetlands: Responses of microbes and macrophytes[J]. Environmental Science & Technology, 2020, 54(21): 14007-14016.
[44] LI Y Q, ZHANG C M, YUAN Q Q, et al. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm[J]. Chemosphere, 2023, 335: 139151. doi: 10.1016/j.chemosphere.2023.139151
[45] ALVAREZ A, SAEZ J M, COSTA J S D, et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals[J]. Chemosphere, 2017, 166: 41-62. doi: 10.1016/j.chemosphere.2016.09.070
[46] 李静, 张宝刚, 刘青松, 等. 导电材料强化微生物直接种间电子传递产甲烷的研究进展[J]. 微生物学报, 2021, 61(6): 1507-1524.
[47] HU Y Y, WANG X F, ZHANG S H, et al. Microbial response behavior to powdered activated carbon in high-solids anaerobic digestion of kitchen waste: Metabolism and functional prediction analysis[J]. Journal of Environmental Management, 2023, 337: 117756. doi: 10.1016/j.jenvman.2023.117756
[48] GUO B, ZHANG Y D, YU N, et al. Impacts of conductive materials on microbial community during syntrophic propionate oxidization for biomethane recovery[J]. Water Environment Research, 2021, 93(1): 84-93. doi: 10.1002/wer.1357
[49] ZHAO Y, HUANG J, ZHAO H, et al. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates[J]. Bioresource Technology, 2013, 143: 439-446. doi: 10.1016/j.biortech.2013.06.020
[50] 谭丰佚, 刘新颖, 党岩, 等. 有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化[J]. 环境工程学报, 2024, 18(4): 1183-1191.
[51] XIONG W, WANG S J, JIN Y, et al. Insights into nitrogen and phosphorus metabolic mechanisms of algal-bacterial aerobic granular sludge via metagenomics: Performance, microbial community and functional genes[J]. Bioresource Technology, 2023, 369: 128442. doi: 10.1016/j.biortech.2022.128442
[52] HUANG C, LIU Q, LI Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research, 2021, 188: 116526. doi: 10.1016/j.watres.2020.116526
[53] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001
[54] XIE C H, YOKOTA A. Zoogloea oryzae sp nov. , a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov. , sp nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 619-624.
[55] 李龙山, 倪细炉, 李昌晓, 等. 生活污水对土壤及湿地植物根际细菌群落的影响[J]. 农业环境科学学报, 2016, 35(11): 2163-2170.
[56] LIU X Y, LI R J, CHEN R, et al. Formation of filamentous fungal pellets in aerobic granular sludge via reducing temperature and dissolved oxygen: Characteristics of filamentous fungi and denitrification performance[J]. Bioresource Technology, 2021, 332: 339.
[57] HUANG X, DONG W Y, WANG H J, et al. Sludge alkaline fermentation enhanced anaerobic- multistage anaerobic/oxic (A-MAO) process to treat low C/N municipal wastewater: Nutrients removal and microbial metabolic characteristics[J]. Bioresource Technology, 2020, 302: 122583. doi: 10.1016/j.biortech.2019.122583