-
印染废水是典型的工业废水,其排放量占全球排放量的20%[1]。废水中有机污染物含量高,成分复杂,色泽高,有毒有害,若未经处理或处理不当后直接排放物将严重破坏生态环境,威胁人类健康[2]。目前印染废水处理方法包括物理法[3]、化学法[4]、生物法[2, 5]、光催化氧化法[6]和芬顿氧化法[7]等多种技术。其中芬顿氧化,尤其是基于H2O2的光芬顿氧化是迄今为止最重要的技术之一,其主要形成多种活性氧(reactive oxygen species,ROS),如过氧化氢自由基(·HO2)、超氧自由基(·O2 −)、羟基自由基(·OH)及单线态氧(1O2)作为氧化剂,将污染物大分子降解成CO2和H2O。
然而,经典的铁基均相芬顿反应存在pH适应范围窄、产生大量含铁污泥、Fe2+活化H2O2产生·OH的速率及Fe3+到Fe2+的转化效率均较低等问题[8]。为了克服这些缺点,基于金属-非金属复合材料的非均相类芬顿氧化工艺是研究的热点之一,其可以通过金属位点和非金属位点如(C-C,C-O,C-N)活化H2O2形成多种ROS。石墨碳氮化物(CN),由于共轭结构中氮和碳之间的共价键,使其具有高的化学稳定性[9],且原料廉价、合成方便。然而,由于CN表面积较小,导致电子-空穴对复合较高;由于层间堆叠导致在水中的分散性差[10]。目前,已经开发了多种方法修饰CN,例如缺陷工程[11]、构建异质结[12]、金属掺杂[13]等。其中,金属掺杂可以缩小其禁带宽度,将其光吸收范围扩展到可见光范围,提高其光催化性能。JIANG等[14]制备Fe掺杂CN材料,在LED灯条件下可以实现4 h内光催化降解4 mg·L−1的磺胺甲噁唑;铜基芬顿比铁基芬顿的pH适应范围更广,且·OH产生速率更快[15]。LI等[16]制备Cu掺杂CN材料,用于太阳光条件下活化H2O2,在pH= 4~8的较宽范围内使20 mg·L−1磺胺二甲氧嘧啶的降解率达到99%以上。而过渡金属钴(Co)具有高导电性,在光催化反应中,Co原子的3d轨道与C/O原子的2p轨道强烈杂化,因此,与g-C3N4的N/C原子键合的Co原子在光照射下可以充当电子收集中心[17]。双金属掺杂催化剂由于2种不同金属组分的协同作用,比单金属掺杂催化剂具有更低的离子浸出率、更好的催化性能和更高的选择性,因而受到广泛关注。有研究通过溶胶-凝胶法制备g-C3N4/ZnCo2O4纳米复合材料,并将其用于H2O2光催化降解RhB染料[18]。另一项研究中先通过水热法制备花状钴酸铜(CuCo2O4),煅烧退火法制备石墨氮化碳(g-C3N4),之后在溶剂中通过超声处理得CuCo2O4/g-C3N4复合材料,将其用于模拟太阳光照射下催化H2O2降解甲基橙(MO)染料[19]。然而,部分研究中材料的制备过程相对复杂,条件要求苛刻或者金属离子的溶出相对较高[7, 20]。在保证催化剂催化性能的前提下,从材料制备的难易程度及减少离子溶出方面考虑,亟需一种制备简单且不会引起二次污染的催化剂。
本研究采用浸渍法和热缩聚法制备Cu/Co共掺杂氮化碳复合材料,探索了复合材料对罗丹明B(RhB)的去除效果,研究了 pH、无机阴离子对该体系的影响及催化剂的稳定性。通过淬灭实验确定参与反应的主要活性物质。最后,结合表征提出H2O2活化和ROS产生的机理。本研究制备的多相类Fenton催化剂,克服了经典均相芬顿弊端,减少了金属离子溶出,可为光芬顿技术处理印染废水提供参考。
Cu/Co共掺杂氮化碳复合材料光-芬顿降解罗丹明B(RhB)
Photo-Fenton degradation of Rhodamine B (RhB) via Cu/Co bi-metal doped-graphitic carbon nitride composite
-
摘要: 针对金属-非金属复合材料制备条件苛刻、金属离子溶出较高的问题,通过简单的浸渍法和热缩聚法制备了钴、铜共掺杂石墨相氮化碳复合材料。以罗丹明B (RhB) 为污染物,研究了催化剂在模拟太阳光下活化H2O2降解RhB的性能。通过XRD、FTIR、XPS和BET等手段,表征分析了催化剂的物化性质,考察了催化剂用量、H2O2浓度、溶液初始pH以及共存无机阴离子对催化剂活化性能的影响。结果表明,Co、Cu以Co—N、Cu—N键的形式稳定存在于复合材料中,限制了钴、铜金属离子的溶出。当CuCN与CoCN的质量比为0.1,得到的复合材料Cu/CoCN(0.1)催化性能最佳。Cu/CoCN(0.1)在初始pH=5.0~12.0内均表现出良好的催化活性。当 Cu/CoCN(0.1)和H2O2的用量分别为0.25 g·L−1和20 mmol·L−1时,10 min对RhB的降解率达到96.5%。H2PO42- 的存在对RhB的去除有一定抑制作用,HCO3− 对RhB的去除有促进作用,而Cl−、SO42- 和NO3− 阴离子对RhB的去除无明显影响。Cu/CoCN(0.1)经4次循环使用后,对RhB的降解率仍能达到91.2%,且Co2+、Cu2+的总溶出质量浓度分别为0.30 mg·L−1和0.56 mg·L−1。自由基捕获实验结果表明,·OH和·O2−是降解过程中主要的活性物质。结合催化剂的表征分析和自由基捕获实验提出该催化剂对RhB的降解机理。本研究结果可为非均相类芬顿技术在印染废水处理中的应用提供理论参考。Abstract: In order to solve the problems of harsh preparation conditions and high dissolution of metal ions in metal-non-metal composites, cobalt and copper co-doped graphitic carbon nitride composites were prepared by the impregnation method and heat condensation polycondensation method. Rhodamine B (RhB) was used as a pollutant to study the performance of the catalyst on activating H2O2 under simulated sunlight and degrading RhB. The physicochemical properties of the catalyst were characterized by XRD, FTIR, XPS and BET. The effects of catalyst dosage, H2O2 concentration, initial pH of solution and coexistence of inorganic anions on the catalytic activation performance were investigated. The results show that Co and Cu existed stably in the composites with the form of Co-N and Cu-N bonds, and the special structure of carbon nitride restricted the dissolution of cobalt and copper metal ions. When the mass ratio of CuCN to CoCN was 0.1, the obtained composite Cu/CoCN(0.1) had the best catalytic performance. Within the initial pH=5.0~12.0 range, Cu/CoCN(0.1) showed a good catalytic activity. At Cu/CoCN(0.1) dosage of 0.25 g· L−1 and H2O2 dosage of 20 mmol·L−1, the degradation rate of RhB was 96.5% in 10 min. The presence of H2PO42- had a certain inhibitory effect on RhB removal, and HCO3− had a promoting effect on RhB removal, while Cl−, SO42- and NO3− had insignificant effects on RhB removal. After 4 cycles of use, the degradation rate of Cu/CoCN(0.1) could still reach 91.2%, and the total dissolution concentrations of Co2+ and Cu2+ were 0.30 and 0.56 mg·L−1, respectively. Free radical scavenging experiments showed that ·OH and ·O2− were the main active species. Through the characterization and analysis of the catalyst and free radical scavenging experiments, the degradation mechanism of RhB by the catalyst was proposed. The results of this study can provide a theoretical reference for the application of heterogeneous Fenton-like technology in the treatment of printing and dyeing wastewater.
-
Key words:
- bi-metal doped /
- composites /
- photo-Fenton /
- degradation of Rhodamine B
-
表 1 CN和Cu/CoCN(0.1)样品的比表面积和孔结构信息表
Table 1. Specific surface area and pore structure information of CN and Cu/CoCN (0.1) samples
催化剂 比表面积/(m2·g−1) 孔体积/(cm3·g−1) 孔径/nm CN 104.56 0.53 10.18 Cu/CoCN(0.1) 112.11 0.84 14.98 表 2 溶液中加入无机阴离子反应前后pH变化
Table 2. Changes in pH before and after the addition of inorganic anions to the solution
阴离子 加入阴离子后pH 氙灯/催化剂/过氧化氢 对照 4.85 5.05 Cl− 5.00 5.09 SO42- 5.02 5.07 HCO3− 8.38 9.04 NO3− 4.99 5.10 H2PO4− 4.63 4.68 -
[1] LI Y, CAO P, WANG S, et al. Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system[J]. Bioresource Technology, 2022, 347: 126691. doi: 10.1016/j.biortech.2022.126691 [2] SONG Y, WANG L, QIANG X, et al. An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes[J]. Journal of Water Process Engineering, 2023, 55: 104242. doi: 10.1016/j.jwpe.2023.104242 [3] PAN Z, SONG M, ZENG B, et al. Novel cetyltrimethylammonium bromide modified mixed adsorbent for efficient treatment of dyeing and printing wastewater[J]. Process Safety and Environmental Protection, 2023, 176: 560-567. doi: 10.1016/j.psep.2023.06.003 [4] TU Y, SHAO G, ZHANG W, et al. The degradation of printing and dyeing wastewater by manganese-based catalysts[J]. Science of the Total Environment, 2022, 828: 154390. doi: 10.1016/j.scitotenv.2022.154390 [5] LU X, WANG H, CHEN J, et al. Negatively charged hollow crosslinked aromatic polymer fiber membrane for high-efficiency removal of cationic dyes in wastewater[J]. Chemical Engineering Journal, 2022, 433: 133650. doi: 10.1016/j.cej.2021.133650 [6] LIU X, CHEN Z, DU W, et al. Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption[J]. Journal of Environmental Management, 2022, 311: 114775. doi: 10.1016/j.jenvman.2022.114775 [7] YANG L, REN X, ZHANG Y, et al. One-step synthesis of a heterogeneous catalyst: Cu+-decorated triazine-based g-C3N4 nanosheet formation and catalytic mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105558. doi: 10.1016/j.jece.2021.105558 [8] FANG G, DENG Y, HUANG M, et al. A mechanistic understanding of hydrogen peroxide decomposition by vanadium minerals for diethyl phthalate degradation[J]. Environmental Science & Technology, 2018, 52(4): 2178-2185. [9] HUANG H, JIANG L, YANG J, et al. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113110. doi: 10.1016/j.rser.2022.113110 [10] WANG W, ZHOU C, YANG Y, et al. Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further?[J]. Chemical Engineering Journal, 2021, 404: 126540. doi: 10.1016/j.cej.2020.126540 [11] LI J, HUANG J, ZENG G, et al. Efficient photosynthesis of H2O2 via two-electron oxygen reduction reaction by defective g-C3N4 with terminal cyano groups and nitrogen vacancies[J]. Chemical Engineering Journal, 2023, 463: 142512. doi: 10.1016/j.cej.2023.142512 [12] WANG Y, HE Y, CHI Y, et al. Construction of S-scheme pn heterojunction between protonated g-C3N4 and α-MnS nanosphere for photocatalytic H2O2 production and in situ degradation of oxytetracycline[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109968. doi: 10.1016/j.jece.2023.109968 [13] SONG T, ZHANG X, MATRAS-POSTOLEK K, et al. Cobalt clusters on g-C3N4 nanosheets for enhanced H2/H2O2 generation and NO removal[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108747. doi: 10.1016/j.jece.2022.108747 [14] JIANG Y, LIU Q, TAN K M, et al. Insights into mechanisms, kinetics and pathway of continuous visible-light photodegradation of PPCPs via porous g-C3N4 with highly dispersed Fe (III) active sites[J]. Chemical Engineering Journal, 2021, 423: 130095. doi: 10.1016/j.cej.2021.130095 [15] MANFRED G, EBERHARDT G, RAMIREZ E. Does the reaction of Cu+ with H2O2 give OH radicals: A study of aromatic hydroxylation[J]. Journal of Organic Chemistry, 1989, 54: 5922-5926. doi: 10.1021/jo00286a024 [16] LI X, GAN X. Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108290. doi: 10.1016/j.jece.2022.108290 [17] NING S, XU H, QI Y, et al. Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co–N species anchored Co@C hybrid[J]. ACS Catalysis, 2020, 10(8): 4726-4736. doi: 10.1021/acscatal.9b04963 [18] PALANIVEL B, HOSSAIN M S, REDDY I N, et al. Chemical oxidants (H2O2 and persulfate) activated photo-Fenton like degradation reaction using sol-gel derived g-C3N4/ZnCo2O4 nanocomposite[J]. Diamond and Related Materials, 2022, 130: 109413. doi: 10.1016/j.diamond.2022.109413 [19] JEGHAN S M N, DO J Y, KANG M. Fabrication of flower-like copper cobaltite/graphitic-carbon nitride (CuCo2O4/g-C3N4) composite with superior photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 405-415. doi: 10.1016/j.jiec.2017.08.049 [20] DONG Q, CHEN Y, WANG L, et al. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst[J]. Applied Surface Science, 2017, 426: 1133-1140. doi: 10.1016/j.apsusc.2017.07.254 [21] REN X, ZHANG Y, YANG L, et al. Degradation of ofloxacin by peroxymonosulfate activated with cobalt-doped graphitic carbon nitride: Mechanism and performance[J]. Inorganic Chemistry Communications, 2021, 133: 108863. doi: 10.1016/j.inoche.2021.108863 [22] CAO J, NIE W, HUANG L, et al. Photocatalytic activation of sulfite by nitrogen vacancy modified graphitic carbon nitride for efficient degradation of carbamazepine[J]. Applied Catalysis B:Environmental, 2019, 241: 18-27. doi: 10.1016/j.apcatb.2018.09.007 [23] GUAN C, JIANG J, PANG S, et al. Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation[J]. Chemical Engineering Journal, 2020, 387: 123726. doi: 10.1016/j.cej.2019.123726 [24] FENG Y, LIAO C, KONG L, et al. Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process[J]. Journal of Hazardous Materials, 2018, 354: 63-71. doi: 10.1016/j.jhazmat.2018.04.056 [25] YANG D, JIANG T, WU T, et al. Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–g-C3N4[J]. Catalysis Science & Technology, 2016, 6(1): 193-200. [26] DING Z, CHEN X, ANTONIETTI M, et al. Synthesis of transition metal‐modified carbon nitride polymers for selective hydrocarbon oxidation[J]. ChemSusChem, 2011, 4(2): 274-281. doi: 10.1002/cssc.201000149 [27] WANG H, BIAN Y, HU J, et al. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation[J]. Applied Catalysis B:Environmental, 2018, 238: 592-598. doi: 10.1016/j.apcatb.2018.07.023 [28] ZHANG L, DING N, HASHIMOTO M, et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production[J]. Nano Research, 2018, 11: 2295-2309. doi: 10.1007/s12274-017-1853-3 [29] ZHANG S, HU C, JI H, et al. Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance[J]. Applied Surface Science, 2019, 478: 304-312. doi: 10.1016/j.apsusc.2019.01.270 [30] YAN W, YAN L, JING C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms[J]. Applied Catalysis B:Environmental, 2019, 244: 475-485. doi: 10.1016/j.apcatb.2018.11.069 [31] DONG X, DUAN X, SUN Z, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B:Environmental, 2020, 261: 118214. doi: 10.1016/j.apcatb.2019.118214 [32] HAO R, WANG G, TANG H, et al. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016, 187: 47-58. doi: 10.1016/j.apcatb.2016.01.026 [33] ZHANG H, TAN H-R, JAENICKE S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen[J]. Journal of catalysis, 2020, 389: 19-28. doi: 10.1016/j.jcat.2020.05.018 [34] FANG M, XIA W, YAO T, et al. Boosting CO2 electroreduction to multi‐carbon products via oxygen‐rich vacancies and Ce4+‐O2‐‐Cu+ structure in Cu/CeO2 for Stabilizing Cu+[J]. ChemCatChem: e202301266. [35] GAO Y, YU G, LIU K, et al. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework[J]. Chemical Engineering Journal, 2017, 330: 157-165. doi: 10.1016/j.cej.2017.06.139 [36] DUNPHY GUZMAN K A, FINNEGAN M P, BANFIELD J F. Influence of surface potential on aggregation and transport of titania nanoparticles[J]. Environmental Science & Technology, 2006, 40(24): 7688-7693. [37] LI Y, CHEN M Y, LU B A, et al. Unravelling the role of hydrogen peroxide in pH-dependent ORR performance of Mn-NC catalysts[J]. Applied Catalysis B:Environmental, 2024, 342: 123458. doi: 10.1016/j.apcatb.2023.123458 [38] RAMASWAMY N, MUKERJEE S. Influence of inner-and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media[J]. The Journal of Physical Chemistry C, 2011, 115(36): 18015-18026. doi: 10.1021/jp204680p [39] HU L, ZHANG G, LIU M, et al. Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016 [40] SUI C, NIE Z, LIU H, et al. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater[J]. Journal of Environmental Sciences, 2024, 135: 86-96. doi: 10.1016/j.jes.2023.01.010 [41] HUI W, DENG X, ZHU Y, et al. Insight for FeS2/MoS2@SiO2 nanoreactor with spatial separation of H2O2 activation sites and pollutant adsorption sites: Enhanced H2O2 activation efficiency and pollutant degradation performance in Fenton reaction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 678: 132496. doi: 10.1016/j.colsurfa.2023.132496 [42] DING Y, ZHU L, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2013, 129: 153-62. doi: 10.1016/j.apcatb.2012.09.015