-
城市卫生填埋场中生活垃圾在卫生填埋过程中,经微生物分解、发酵等反应,产生大量有毒有害的垃圾渗滤液,对填埋场周边生态环境系统构成严重危险[1]。垃圾渗滤液的处置流程通常采用“厌氧-缺氧-好氧”组合生物工艺脱氮并降解有机污染物,但要使垃圾渗滤液达标排放,需进一步结合深度处理工艺。在垃圾渗滤液深度处置工艺中,纳滤技术因其优异的污染物去除效果而备受关注,MAGALHAES等[2]通过纳滤膜能够实现90%以上的COD去除率。但纳滤深度处理工艺会产生处理体积约15%~30%的纳滤浓缩液[3]。相较于垃圾渗滤液,垃圾渗滤液纳滤浓缩液中因含有更高浓度的有机难降解污染物、药物污染物、无机盐等[4],使得生化系统难以对其进一步处置,因此,亟需一种垃圾渗滤液纳滤浓缩液生化预处理工艺以提高其可生化性。
垃圾渗滤液纳滤浓缩液常规处理方法有回灌法、蒸发法和高级氧化法[5]。回灌法直接将浓缩液回流至垃圾填埋场填埋层,具有运行简便,处理成本低的优势,但长期回灌会造成填埋场渗滤液水质严重恶化并影响填埋层稳定性[6]。蒸发法通过加热蒸发的方式,可快速处置垃圾渗滤液纳滤浓缩液,但该方法对处置设备的抗腐蚀要求很高[7]。高级氧化法(advanced oxidation processes, AOPs)主要利用强氧化性的活性自由基(羟基自由基(·OH)、氯自由基、超氧自由基等[8])能高效分解、矿化难降解有机污染物,以提高垃圾渗滤液纳滤浓缩液的可生化性,但AOPs也存在药剂消耗量大和运行成本高等问题[9]。臭氧(O3)氧化法是AOPs中广泛应用于污水处理的一种工艺,O3在水体中可形成O3分子、单线态氧和·OH等一系列强氧化自由基[10]。其中O3分子和单线态氧具有选择氧化性,可选择性降解含有不饱和键的物质[11-12],而·OH则可对绝大多数污染物均有较好的去除效果[13]。ZHAO等[14]通过O3预处理渗滤液纳滤浓缩液,COD去除率可达到25%左右,挥发性脂肪酸质量浓度从18.14 mg·L−1提高至101.70 mg·L−1,其中大分子有机污染物可高效转化为可降解小分子有机物,渗滤液纳滤浓缩液的可生化性得到显著提高。HE等[15]构建的γ-Al2O3/O3体系处理垃圾渗滤液浓缩液,在γ-Al2O3投加量为50 g·L−1,O3投加量为22 mg·min−1,初始pH为7.3,反应温度为30 ℃,处理时间为30 min的最佳条件下,COD去除率可达70%,(BOD5/COD)B/C可从0.01提高到0.2。尽管目前O3氧化在催化剂领域的研究取得了良好进展,但O3催化剂在长期运行中的存在严重的失活问题极大限制其实际应用。HE等[16]在O3催化氧化处理实际废水中发现在O3氧化工艺稳定运行12个月后,O3催化剂的催化处理COD效率由56%回落至14.5%。此外,O3在水中较低的溶解度和传质系数导致其利用率低,也阻碍基于O3的AOPs工艺用于垃圾渗滤液纳滤浓缩液的处理。因此,采用新的O3氧化技术应用于垃圾渗滤液纳滤浓缩液的高效处理已成为未来的着重研究的方向。
臭氧微纳米气泡技术(O3/micro-nanobubbles, O3/MNBs)是将微纳米气泡技术与O3氧化技术高效结合的一种工艺。微纳米气泡技术常采用水力空化,通过改变流体水力条件造成局部压力减小而引发空化效应,产生的微纳米气泡尺寸一般为0.2~50 μm,能够在水中停留数小时[17]。这使得O3可以更有加效的溶于水中,改善了O3溶解度低和传质系数低的问题,提高O3利用率[18]。此外,微纳米气泡较小的直径会导致气泡内部产生较高的压力,进一步加大了O3的溶解度[18]。ZHENG等[19]采用O3/MNBs和常规O3法处理晴纶废水,相同条件下,O3/MNBs可实现42%的COD去除率,B/C从0.04提升到0.13,而常规O3法的COD去除率仅有17%,B/C从0.04提升到0.08。当前O3/MNBs在有机污染物降解方面取得了一定的成果,但该技术的应用仍多停留于模拟废水,在实际废水中的应用鲜有报道。
鉴于此,本研究将采用絮凝-O3/MNBs耦合工艺高效处理垃圾渗滤液纳滤浓缩液,探究耦合工艺中絮凝阶段的絮凝剂投加量、絮凝时间、絮凝转速以及O3/MNBs工艺的进气量、反应时间、反应温度等工艺参数对垃圾渗滤液纳滤浓缩液中污染物去除及可生化性的影响。并深入考察了絮凝-O3/MNBs耦合工艺对双酚A(Bisphenol A, BPA)、磺胺嘧啶(Sulfadiazine, SDZ)、磺胺甲恶唑(Sulfamethoxazole, SMX)和萘普生(Naproxen, NPX)等典型药物物质的去除效能。本研究为絮凝-O3/MNBs耦合在垃圾渗滤液纳滤浓缩液预处理工艺的实际工程运用中提供科学的技术支持。
-
实验中所采用的垃圾渗滤液纳滤浓缩液采集自佛山市高明区苗村白石坳垃圾填埋场一厂,渗滤液纳滤浓缩液的基本水质参数:COD为(4752±140) mg·L−1,BOD5为(427±30) mg·L−1。实验试剂甲醇、乙腈、甲酸等为色谱级,聚合硫酸铁(polymerized ferrous sulfate, PFS)、聚丙烯酰胺(polyacrylamide, PAM)、氢氧化钠、硫酸、BPA、SDZ、SMX和NPX等为分析纯,上述试剂均采购自阿拉丁试剂(中国)。实验仪器包括多功能数控消解仪(昌鸿DIS-36B,中国),微纳米气泡发生器(禹创AD-24030,山东),O3发生器(同林3S-TS10,中国),磁力搅拌器(艾卡C-MAG HS-7,德国)。
-
1)絮凝实验。絮凝实验示意图见图1(a),取1 L垃圾渗滤液纳滤浓缩液于烧杯中。置于磁力搅拌器上,加入适量质量浓度为30%的PFS溶液,以600 r·min−1快速混合60 s,随后在一定范围内调节转速,反应结束后加入适量质量分数(3‰)PAM溶液,200 r·min−1搅拌60 s,随后静置10 min,取上清液。絮凝实验选取絮凝时间(0~60 min)、絮凝剂投加量(0~12 g·L−1)及絮凝转速(0~400 r·min−1)为主要的技术参数进行研究,探究絮凝预处理垃圾渗滤液纳滤浓缩液的最优条件,每批实验重复2次。
2) O3/MNBs实验。絮凝实验完成后,取4 L絮凝处理后的垃圾渗滤液纳滤浓缩液(基本水质参数:COD为(1230±37) mg·L−1,BOD5为(270±15) mg·L−1)于O3/MNBs反应器装置中,O3/MNBs反应器装置如图1(b)所示。该装置高30 cm,内径14 cm,水浴层宽2 cm,有效容积4.6 L。本实验中的O3发生器以纯氧为气源产生O3气体,气体中O3的质量浓度为80 mg·L−1,O3气体进入MNBs发生器与垃圾渗滤液纳滤浓缩液絮凝上清液混合,通过高速旋转和加压溶解作用获得含MNBs的水悬浮液。O3/MNBs反应器装置中未反应的O3通过反应器顶部通气孔进入质量浓度为2%碘化钾(KI)吸收液。O3/MNBs高效氧化处理垃圾渗滤液纳滤浓缩液的实验选取O3进气量(50~500 mL·min−1)、初始pH(3~11)和反应温度(10~50 ℃)等为主要影响因素进行研究,考察其对垃圾渗滤液纳滤浓缩液可生化性的影响,每批实验重复3次。
-
1)水质指标分析。化学需氧量采用COD测定仪(哈希DR1010,美国)测定,pH采用pH计(三信SX 751,上海)测定,5天生化需氧量(BOD5)采用BOD测定仪(赛莱默OxiTop IS12,德国)测定,色度和腐殖质采用紫外分光光度计(岛津UV2700,日本)测定,腐殖质以紫外分光光度计在254 nm波长处的吸光度计,色度计算方法[18]如式(1)所示。
式中:C为色度;A436、A525、A620分别为紫外分光光度计在波长为436、525和620 nm波长处的吸光度。
2)药品和个人护理品污染物分析。本研究中的药品和个人护理品(pharmaceutical and personal care products, PPCPs)污染物检测通过固相萃取法富集浓缩,过膜后装入液相小瓶,浓缩后待测样品4 ℃保存。PPCPs污染物采用高效液相色谱仪(赛默飞Ultimate 3000,美国)进行检测,色谱柱型号为AcclaimTM 120 C18(5 μm,4.6 mm×150 mm),检测方法见表1。
3) 发光细菌急性毒性检测。急性毒性检测采用费氏弧菌(金达清创V.fischeri,北京)作为急性毒性检测的实验菌种,急性毒性检测标准采用硫酸锌作为阳性对照,以质量浓度2%的氯化钠溶液作为空白对照。急性毒性检测时将样品加入培养好的V.fischeri菌液,放入生物发光检测仪内振荡10 s,然后置于空气中暴露15 min后,测定发光值。发光抑制率计算方法见式(2),根据不同的发光抑制率判别水质急性毒性风险等级的标准为:E<30%时,属低毒;30%≤E<50%时,属中毒;50%≤E<70%时,属重毒;70%≤E<100%时,属高毒;E≥100%时,属剧毒[20]。
式中:E为发光抑制率,%;I为样品暴露15 min后的发光值;I0为空白组暴露15 min后的发光值。
-
采用絮凝工艺对垃圾渗滤液纳滤浓缩液进行预处理,能有效去除垃圾渗滤液纳滤浓缩液中的胶体和大分子有机物[21],降低后续O3/MNBs工艺的处理能耗,并提高处理效率,对垃圾渗滤液纳滤浓缩液的高效处理有着重要作用。游丽华[22]采用混凝耦合微气泡O3氧化处理焦化废水生化尾水,可实现83.1%的COD去除率,其中混凝工艺去除效果占比可达到46.1%。
本实验所采用的PFS絮凝剂,水解形成[Fe(H2O)6]3+、[Fe2(H2O)3]3+、[Fe(H2O)2]3+等多核络离子可使垃圾渗滤液纳滤浓缩液中的胶体物质脱稳,形成絮体沉降下来以此去除污染物[23]。本实验通过调整絮凝工艺的时间、PFS投加量和絮凝转速等参数研究污染物的最佳去除条件,结果如图2所示。
在PFS投加量为9 g·L−1,絮凝转速为300 r·min−1的条件下,探究了絮凝时间0~60 min对絮凝工艺的影响,结果见图2(a)。可见,垃圾渗滤液纳滤浓缩液的色度、腐殖质及COD的去除率均随絮凝时间的延长而提高,在0~40 min内色度、腐殖质及COD去除率分别达到62.2%、46.9%和69.9%,B/C由0.09增至0.20。但进一步延长絮凝时间至60 min时,色度、腐殖质和COD的去除率分别为69.8%、52.7%和73.7%,B/C增至0.21。这一结果表明,垃圾渗滤液纳滤浓缩液絮凝工艺在0~40 min时,垃圾渗滤液纳滤浓缩液短时间内可形成大量絮体从而达到较高的去除率,但40 min后随着垃圾渗滤液纳滤浓缩液中的大分子污染物浓度的降低,絮体间的碰撞概率减小,去除效果增长有限。
确定最佳絮凝时间为40 min,选取絮凝转速为300 r·min−1,以此探究PFS投加量在0~12 g·L−1时对絮凝效果的影响,结果如图2(b)所示。当PFS投加量为0~2 g·L−1时,垃圾渗滤液纳滤浓缩液的污染物去除效果较差,色度、腐殖质和COD的去除率仅为1.7%、0.5%和7.4%,B/C从0.09增至0.10;而在PFS投加量为4~10 g·L−1时,垃圾渗滤液纳滤浓缩液处理效果随着PFS投加量的增加而明显提高,当PFS投加量为10 g·L−1时,垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别提高至79.8%、59.2%和73.3%,B/C增至0.22。这一结果表明,在垃圾渗滤液纳滤浓缩液的PFS投加量为0~2 g·L−1时,形成的多核络离子较少,凝聚的絮体尺寸小、数量少,难以通过良好的网捕卷扫作用去除污染物[24]。随后增加垃圾渗滤液纳滤浓缩液的PFS投加量为4~10 g·L−1,垃圾渗滤液纳滤浓缩液中多核络离子数量也相应增加,这使得胶体与多核络离子不断碰撞脱稳,脱稳胶体进而被络离子吸附形成长链结构,并促进网捕卷扫作用将小絮体沉淀下来[24]。当PFS投加量进一步增加至12 g·L−1时,絮凝处理效果并无显著提高,这是由于过量的絮凝剂会使得絮体表面电荷发生改变,出现胶体再稳现象,去除率无法提高甚至降低[25]。因此,垃圾渗滤液纳滤浓缩液絮凝处理最佳PFS投加量为10 g·L−1。
在最佳絮凝时间40 min,最佳PFS投加量10 g·L−1的条件下,考察0~400 r·min−1转速对絮凝工艺处理效能的影响,结果如图2(c)所示。当转速为0~300 r·min−1时,絮凝效果随转速的增加而提高,色度、腐殖质及COD去除率分别从0 r·min−1的20.4%、14.2%和13.3%提高至300 r·min−1下的79.8%、59.2%和73.3%,B/C由0.18增至0.22。而当絮凝转速增至400 r·min−1时,相较于300 r·min−1垃圾渗滤液纳滤浓缩液絮凝效果出现下降,色度、腐殖质及COD去除率由79.8%、59.2%和73.3%下降至74.0%、55.3%和69.4%,B/C从0.22降至0.21。上述结果表明,适宜搅拌强度是保证PFS、胶体以及絮体间能够充分接触的必要条件,需要注意的是,在搅拌强度过高时,已经形成的絮体会被水的剪切力破碎从而致使去除率下降[26]。
根据以上实验结果,絮凝时间40 min、PFS投加量10 g·L−1、絮凝转速300 r·min−1为垃圾渗滤液纳滤浓缩液最佳絮凝条件。较GU等[27]用PFS处理渗滤液浓缩液的COD去除效果(44.4%)有较大提高。尽管絮凝去除了大部分污染物,絮凝处理后的垃圾渗滤液纳滤浓缩液可生化性依然较差[28],B/C仅为0.22,仍需进一步处理以提高可生化性。
-
1) O3进气量对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。垃圾渗滤液纳滤浓缩液经絮凝处理后,尽管COD去除率达到73.3%,但B/C仍较低,无法保证后续生物工艺深度处理效果。因此,本实验采用O3/MNBs高级氧化技术进一步提高垃圾渗滤液纳滤浓缩液的可生化性。O3作为氧化剂直接参与氧化反应,其使用量直接影响整个O3/MNBs处理的效果。实验控制O3气体中O3质量浓度为80 mg·L−1,通过改变O3进气量来探究O3投加量对垃圾渗滤液纳滤浓缩液处理效果的影响。
在初始pH为(5.8±0.2)、反应温度为(25±1) ℃的条件下,研究了O3进气量(50~500 mL·min−1)对O3/MNBs处理垃圾渗滤液纳滤浓缩液效果的影响,结果如图3所示。可见,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD去除率由O3进气量为50 mL·min−1条件下的35.3%、60.8%和10.3%提高至400 mL·min−1的77.6%、75.1%和26.5%。但当进一步提高O3进气量,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD的去除率均无明显增效,这与WU等[29]的研究结果相似。与色度、腐殖质及COD去除率随O3进气量增加而逐步上升的情况不同,O3/MNBs出水B/C在低O3进气量时出现了轻微降低的现象,B/C从垃圾渗滤液纳滤浓缩液絮凝处理后出水时的0.22分别降至50 mL·min−1下的0.14和100 mL·min−1下的0.13。进一步增加O3进气量,O3/MNBs出水B/C出现明显改善,在进气量由200 mL·min−1增至400 mL·min−1的条件下,O3/MNBs出水B/C由0.21增至0.44。但当O3进气量进一步增加至500 mL·min−1时,O3/MNBs出水B/C再次降低。这可能是由于水中O3含量较低时,O3优先与可生物降解污染物进行反应,BOD组分浓度下降;随着O3进气量的提高,O3与难以生物降解的耗氧有机物(以COD计)反应逐步占优,分解大分子难降解有机物并生成小分子有机物,BOD组分浓度上升;O3过量时,多余的O3会与·OH反应[30],导致处理效果不佳,垃圾渗滤液纳滤浓缩液的B/C出现下降。综合考虑,O3/MNBs工艺最佳参数O3进气量为400 mL·min−1。O3投加量是影响O3/MNBs效能的重要因素,但并不是唯一因素,可通过调控其他因素来提高O3/MNBs工艺的处理效果。
2)初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。O3氧化方式分为O3分子的直接氧化和·OH的间接氧化,·OH氧化还原电位(2.80 eV)比O3分子的氧化还原电位(2.07 eV)更高,具有更强的氧化性,同时,较O3分子选择性氧化,·OH可以对绝大多数污染物进行降解[31]。并且O3分子与·OH在O3/MNBs反应体系内存在如式(3)~(5)的反应过程,两者均与反应体系的pH密切相关:酸性条件下,体系以O3分子为主;而碱性条件下,体系以·OH为主[32]。O3/MNBs工艺通过改变垃圾渗滤液纳滤浓缩液絮凝处理后的出水初始pH,考察初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。
确定最佳O3进气量为400 mL·min−1,在反应温度为(25±1) ℃时,探究初始pH(3、5、7、9、11)对垃圾渗滤液纳滤浓缩液絮凝上清液处理效果的影响,结果如图4所示。由图4(a)可知,当初始pH为3~5时,垃圾渗滤液纳滤浓缩液脱色率随着反应时间一直稳步上升,分别达到了73.3%和80.0%。在pH为7时,色度可完全去除,继续提高初始pH,完全脱色所用时间也越来越短。同时,提高垃圾渗滤液纳滤浓缩液的初始pH对腐殖质去除率也有增益,垃圾渗滤液纳滤浓缩液腐殖质去除率由pH=3时的71.7%增加到pH=11时的80.8%。此外,图4(b)结果显示初始pH对COD去除率和B/C的影响显著,pH=3时,COD去除率为26.3%;pH=11时,COD去除率为38.9%。B/C由pH=3时0.43提高到pH=11时的0.62,垃圾渗滤液纳滤浓缩液的可生化性大幅提升。上述结果表明,提高进水初始pH能够有效提高O3/MNBs体系对垃圾渗滤液纳滤浓缩液絮凝上清液中污染物的去除效果。从反应过程中pH变化(图4(c))可知,在初始pH=3时,反应体系pH从最初的pH=3提高至pH=3.51。这表明O3分子基本未消耗氢氧根离子产生·OH,此时,O3/MNBs反应体系以O3分子氧化为主,使得O3/MNBs体系具有氧化选择性,只能降解含有不饱和键的物质,整体污染物去除率较低[31]。后续提高初始pH,反应过程中pH均成下降趋势,表明O3分子消耗氢氧根离子生成·OH,随着初始pH提高,反应过程中pH下降趋势愈大,这是因为随着氢氧根离子浓度大幅增加,O3分子加速分解为·OH。同时,有研究[33]表明,MNBs表面通常带有负电荷,这意味着阴离子氢氧根将聚集在气-液界面,O3在界面处以更快的速度产生·OH。此外,MNBs的坍缩会产生更多的·OH[34],进一步提高垃圾渗滤液纳滤浓缩液絮凝上清液中的·OH的含量,最终使O3/MNBs工艺进水初始pH=11时,垃圾渗滤液纳滤浓缩液污染物去除率及出水B/C最高。因此,O3/MNBs反应体系处理垃圾渗滤液纳滤浓缩液絮凝上清液的最佳初始pH为11。
3)温度对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。温度对传统O3氧化的影响较为显著,王新典等[35]研究发现单一O3体系在温度由15 ℃升到65 ℃时,对苯酚溶液的降解率从73.4%提高到89.2%。李玉英等[36]研究了在不同温度条件下,微电解-O3处理水杨酸的效能,水杨酸去除率由15 ℃的78.9%增至30 ℃的96.5%。因此,本实验研究了反应温度对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的影响。
在最佳O3进气量400 mL·min−1,最佳初始pH=11的条件下,考察反应温度10~50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响,结果如图5所示。可见,在反应温度为10 ℃时,色度、腐殖质及COD去除率分别为100.0%、74.7%及33.5%,B/C从0.22增至0.58。反应温度20~50 ℃条件下,垃圾渗滤液纳滤浓缩液的脱色率均在40 min时达到95.0%左右,在80 min可实现色度的完全去除;垃圾渗滤液纳滤浓缩液的腐殖质去除率在80 min时达到80.0%左右,延长反应时间并无明显增效。由图5(b)可见,垃圾渗滤液纳滤浓缩液的COD去除率在20~50 ℃内无显著变化,均随时间逐步提高,最后去除率为37.0%左右;垃圾渗滤液纳滤浓缩液的B/C在20~50 ℃条件下的变化与COD去除率近似,B/C均从0.22增至0.62左右,上述结果表明在反应温度为10 ℃时,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能会略微降低,这一结果可能是O3分子在水体中存在传质阻力因降温而增大的现象[37],致使O3分子分解缓慢,大量O3分子直接逸散至空气中,参与反应的O3浓度降低。在反应温度20~50 ℃的条件下,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能均有所提高,这表明升温改善了O3分子传质阻力大的问题。需要注意的是,在反应温度为20~50 ℃时,反应温度从20 ℃增至50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能无显著影响。这可能是由于随着反应温度的升高,O3的传质效率和反应速率会有所提高,但存在着温度升高O3因分子热运动在垃圾渗滤液纳滤浓缩液中溶解度下降的问题[38]。从反应活化能角度来看,升温会促进溶液中的放热反应,但同时也会抑制存在的吸热反应。垃圾渗滤液纳滤浓缩液含有大量污染物,在O3/MNBs实验中同时发生大量的吸热和放热反应,当垃圾渗滤液纳滤浓缩液中所有放热反应和吸热反应叠加在一起所呈现出来的表观活化能数值比较小时,O3/MNBs体系的反应速率对反应温度的变化就会比较迟钝,体现为反应温度对垃圾渗滤液纳滤浓缩液污染物去除率并无明显影响。这与游丽华[22]研究温度对微气泡O3氧化去除污染物效果得出的结论相似。综合考虑,选择30 ℃为最佳反应温度。综上所述,在O3进气量400 mL·min−1、初始pH=11、反应温度为30 ℃的条件下可以实现O3/MNBs的最佳处理效果。
-
为进一步研究絮凝-O3/MNBs耦合工艺对垃圾渗滤液纳滤浓缩液可生化性的影响,本实验在垃圾渗滤液纳滤浓缩液中选取代表性的PPCPs,如BPA、SDZ、SMX和NPX等药物污染物进行深入研究。有研究表明,现有污水处理厂的活性污泥体系中的微生物无法有效去除大部分PPCPs[39],同时PPCPs会对微生物产生毒害作用[40]。因此,垃圾渗滤液纳滤浓缩液中的高浓度PPCPs的去除对垃圾渗滤液纳滤浓缩液可生化的影响尤为重要。
本研究采用的絮凝耦合O3/MNBs工艺对垃圾渗滤液纳滤浓缩液中PPCPs污染物有较高的去除效率,结果如图6(a)所示。最佳条件下的絮凝工艺对垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX去除率分别为32.3%、30.8%、34.5%和25.7%,BPA、SDZ、SMX及NPX的质量浓度分别从垃圾渗滤液纳滤浓缩液原液的194.1、29.4、25.0和20.3 μg·L−1降至絮凝工艺出水的131.5、20.3、16.4和15.1 μg·L−1。而在进一步的O3/MNBs处理中,垃圾渗滤液纳滤浓缩液中的BPA、SDZ、SMX和NPX去除率增至60.4%、100.0%、80.4%和67.7%。这一结果表明,垃圾渗滤液纳滤浓缩液通过絮凝工艺去除PPCPs的效能是有限的,絮凝出水进一步通过O3/MNBs工艺处理,才可实现较高的PPCPs去除率。这可能是因为絮凝通过吸附电中和及网捕卷扫作用去除胶体物质,对于非胶体物质,主要通过PFS絮凝剂形成的铁盐氢氧化物网状沉淀裹挟去除[41],PPCPs这类结构尺寸较小的物质可穿过较大孔径的网眼留在垃圾渗滤液纳滤浓缩液絮凝出水中。在进一步的O3/MNBs工艺中,垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX等PPCPs通过O3分子和·OH氧化降解[42-45],母体被分解成小分子物质甚至是完全矿化。絮凝-O3/MNBs耦合工艺处理BPA、SDZ、SMX及NPX等难降解物质的过程与垃圾渗滤液纳滤浓缩液中B/C的变化相互验证:絮凝工艺在去除垃圾渗滤液纳滤浓缩液大分子有机物的同时也去除了部分小分子有机物,使得B/C从垃圾渗滤液纳滤浓缩液原液的0.09增至絮凝出水的0.22,可生化性增幅较小,而后的O3/MNBs工艺在降解大分子有机物的同时也生成了小分子有机物,垃圾渗滤液纳滤浓缩液可生化性显著提高,B/C从絮凝出水的0.22增至0.62。
-
垃圾渗滤液纳滤浓缩液因含有高浓度有机物、无机盐和重金属等污染物,具有相当高的生物毒性,本实验采用V.fischeri法检测其生物毒性,并以发光抑制率作为生物毒性的直观体现。垃圾渗滤液纳滤浓缩液原液的发光抑制率高达92.4%,属高毒水体,对于生物工艺的微生物种群有着极高的毒害作用。垃圾渗滤液纳滤浓缩液进行生物处置前,须经预处理工艺降低水质毒性。
在絮凝-O3/MNBs耦合工艺最佳实验条件下,垃圾渗滤液纳滤浓缩液的生物毒性变化如图6(b)所示,絮凝工艺对垃圾渗滤液纳滤浓缩液生物毒性的处理效果非常显著,发光抑制率从垃圾渗滤液纳滤浓缩液原液的92.4%降至垃圾渗滤液纳滤浓缩液絮凝处理出水的50.6%,水质毒性等级从高毒降为重毒,生物毒性大幅降低。而在O3/MNBs中进一步反应,水中的O3分子和·OH通过加成反应、亲电反应、亲核反应和链式反应[13]来使大分子物质发生开环或是断链,有机物分子结构发生变化使得生物毒性降低。此外,O3/MNBs可以对垃圾渗滤液纳滤浓缩液中的重金属络合物进行破络,释放出的部分金属离子水解沉淀,减轻了垃圾渗滤液纳滤浓缩液重金属带来的生物毒性,絮凝处理后的垃圾渗滤液纳滤浓缩液对发光细菌的抑制率从50.6%降至20.3%。水质毒性等级从重毒降为低毒,生物毒性进一步降低。絮凝-O3/MNBs耦合工艺使垃圾渗滤液纳滤浓缩液的生物毒性从92.4%降至20.3%,水质毒性等级从原液的高毒级别降至絮凝-O3/MNBs耦合工艺处理出水的低毒级别,极大减轻了后续生物工艺的负荷,有效提高垃圾渗滤液纳滤浓缩液的可生化性,为垃圾渗滤液纳滤浓缩液进一步生物处置可提供良好的条件。
-
1)在絮凝实验中,在絮凝时间为40 min,PFS投加量为10 g·L−1,絮凝转速为300 r·min−1的最佳条件下,垃圾渗滤液纳滤浓缩液的色度、腐殖质和COD去除率分别达到79.8%、59.2%和73.3%,B/C从0.09增至0.22,垃圾渗滤液纳滤浓缩液的可生化性得到改善,并为后续O3/MNBs工艺的高效处理创造有利条件。
2) O3进气量为400 mL·min−1,初始pH=11,反应温度为30 ℃的条件可以实现O3/MNBs的最佳处理效果,经絮凝处理后的垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别为100.0%、80.8%和38.9%,B/C从0.22增至0.62,垃圾渗滤液纳滤浓缩液可生化性得到显著提升。
3)絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液的B/C变化及纳滤浓缩液中BPA、SDZ、SMX和NPX等新污染物降解效率的研究一致表明絮凝-O3/MNBs耦合工艺是提升垃圾渗滤液纳滤浓缩液可生化性的有效方法,最佳处置条件下能有效减弱垃圾渗滤液纳滤浓缩液72.1%生物毒性。
絮凝-O3/MNBs耦合工艺高效处理垃圾渗滤液纳滤浓缩液
Efficient treatment of nanofiltration concentrate of landfill leachate through the coupling process of flocculation-O3/MNBs
-
摘要: 针对垃圾渗滤液纳滤浓缩液可生化性极低而无法进行生物处置的问题,本研究采用絮凝-臭氧微纳米气泡(O3/micro-nanobubbles,O3/MNBs)耦合工艺处理垃圾渗滤液纳滤浓缩液以期提高其可生化性。通过改变絮凝工艺的絮凝时间,聚合硫酸铁投加量,絮凝转速以及O3/MNBs工艺的臭氧进气量,初始pH,温度等参数来探究絮凝-O3/MNBs耦合工艺最佳工艺参数。结果表明,在絮凝时间为40 min,聚合硫酸铁投加量为10 g·L−1,絮凝转速为300 r·min−1的最佳絮凝工艺参数下,垃圾渗滤液纳滤浓缩液的色度、腐殖质及COD去除率分别为79.8%、59.2%和73.3%,B/C从0.09增至0.22,生物毒性由92.4%(高毒)降至50.6%(重毒)。垃圾渗滤液纳滤浓缩液絮凝工艺的出水进一步采用O3/MNBs工艺处理,在臭氧进气量为400 mL·min−1,初始pH=11,反应温度为30 ℃的最佳工艺参数下,絮凝出水的色度、腐殖质及COD去除率分别达到100.0%、80.8%和38.9%,B/C由0.22增至0.62,生物毒性由50.6%(重毒)降至20.3%(低毒)。结果表明,絮凝-O3/MNBs耦合工艺是提升垃圾渗滤液纳滤浓缩液可生化性的有效方法。
-
关键词:
- 垃圾渗滤液纳滤浓缩液 /
- 絮凝 /
- 臭氧微纳米气泡 /
- 可生化性
Abstract: Aiming at the problem that nanofiltration concentrate of landfill leachate has the limited bioavailability for biological disposal. In this study, the flocculation-ozone/micro-nanobubbles (O3/MNBs) coupling process was employed to treat nanofiltration concentrate of landfill leachate and improve its bioavailability. The optimal process parameters for the flocculation-O3/MNBs coupling process were explored by adjusting the flocculation time, PFS dosage and flocculation rotation speed in the flocculation process, and O3 inlet volume, initial pH and temperature in the O3/MNBs process. The result showed that at the optimal flocculation process parameters: flocculation time of 40 min, PFS dosage of 10 g·L−1 and flocculation rotation speed of 300 r·min−1, the colorimetry, humus and COD removal rate of nanofiltration concentrate of landfill leachate were 79.8%, 59.2% and 73.3%, respectively, the B/C increased from 0.09 to 0.22, and the biotoxicity decreased from 92.4% (high toxicity) to 50.6% (heavy toxicity). The effluent of flocculation process treating nanofiltration concentrate of landfill leachate was further treated by O3/MNBs process. At the optimal process parameters: O3 inlet volume of 400 mL·min−1, initial pH=11 and reaction temperature of 30°C, the removal rates of chromaticity, humus, and COD of flocculation effluent reached 100.0%, 80.8%, and 38.9%, respectively, and the B/C increased from 0.22 to 0.62, and the biotoxicity was reduced from 50.6% (heavy toxicity) to 20.3% (low toxicity). The results indicated that the flocculation-O3/MNBs coupling process is an effective method to enhance the bioavailability of nanofiltration concentrate of landfill leachate. -
近年来,畜禽养殖过程中产生的大量粪污引起了严重的环境污染,已严重阻碍了畜禽养殖业的可持续发展[1-2]。未经处理的畜禽粪污富含致病菌且成分不稳定,在储存过程中会释放大量甲硫醇、氨气、硫化氢和丙烯醛等10多种恶臭有毒还原性气体,严重危及人畜健康[3-4]。然而,畜禽粪污作为一种富含氮、磷、钾等营养物质的有机固体废物,又是可用于促进农作物生长的重要肥料资源[5-6]。堆肥技术主要是通过微生物对畜禽粪污中不稳定的有机物质进行降解,生成稳定的腐殖质类物质,从而将其转化为高价值有机肥料,实现畜禽粪污的资源化利用[7-8]。畜禽粪污堆肥处理不仅可以解决环境污染问题,而且所得的肥料有助于改善土壤环境、提高土壤肥力,对实现畜禽业及农业可持续发展具有重要意义[9]。
好氧堆肥法可有效地脱臭及灭菌,有利于肥料的养分保持,是我国畜禽粪便处理的主要方式。然而,现有的好氧堆肥反应器在堆肥过程中存在非自动化、物料腐熟度差异大、控温困难、氮损失严重等缺陷,限制了好氧堆肥反应器的广泛应用[10-12]。因此,加快低成本、环保型、高效自动化堆肥反应器的开发,对促进畜禽粪污肥料化应用尤为重要。
本研究采用可调控式新型高温好氧堆肥器,以谷壳(粉)作为堆肥辅料,分析鸡粪谷壳在堆肥过程中的理化性质,并利用吸收塔将堆肥过程中释放的氨气转化为磷酸铵镁(MAP),再添加至鸡粪谷壳有机肥料中,从而生产出优质商品有机缓释肥料。
1. 材料与方法
1.1 供试原料
鸡粪和谷壳原料化学特性见表1。堆肥菌种为自筛选获得的以嗜热好氧纤维素分解菌为主体的堆肥混合菌群,主要包括真菌、放线菌、耐热芽孢杆菌等菌种,活菌总数每克大于20×108个。
表 1 鸡粪和谷壳的化学特性Table 1. Chemical properties of chicken manure and rice chaff供试原料 碳/% 氮/% 碳氮比 含水量/% pH 鸡粪 18.87±0.95 1.51±0.14 12.49±0.32 40.34±1.24 8.82±0.52 谷壳 41.00±2.34 <0.30 >136 10.23±0.58 — 1.2 实验装置
新型高温好氧堆肥器主要由控制面板、发酵罐、空压机通风系统、气体吸收塔等4个部分组成(图1)。其中,控制面板用于控制堆肥器内物料的温度及发酵罐的搅拌频率,同时显示堆肥器湿度。发酵罐总容积设计为75 L,根据《搅拌与混合设备设计选用手册》[13]中反应罐有效容积计算,有效容积为50 L。发酵桶为圆柱体桶装结构(Ф60 cm×40 cm),采用旋转式搅拌。空压机通风系统采用入功率0.37 W、输出转速5~25 r·min−1。气体吸收塔的容积为188 L,塔内装有Ф25 mm的塑料阶梯环填料,用于吸收堆肥发酵过程逸出的氨气,以镁盐沉淀剂转化为磷酸铵镁(MAP)。塔式发酵罐的容量为30 L,运行物料容量为20 L,罐体内部用聚氨酯作保温层,罐体采用全封闭式,发酵产生的废气经处理系统处理后,直接排除罐外。采用涡轮上翻搅拌及液压驱动,以保证罐体内腐熟物满载荷运行。
1.3 堆肥和取样
本实验采用鸡粪和谷壳粉按C/N=25混合,再用去离子水调节混合物料水分含量至60%,并搅拌混匀得堆肥物料,最后添加菌剂于堆肥反应器中进行发酵反应。塔式发酵罐进行的实验堆料高度定为50 cm,物料重20 kg,堆肥时间40 d。新型堆肥器处理物料50 kg,每48 h自动搅拌1次,每次5 min,总堆肥时间为40 d。采用五点取样法采集堆肥样品,分别采集了第0、1、2、5、7、9、11、34、39、40 d的样品,每份取样50 g装于自封袋中密封,并于4 ℃条件下保存。
1.4 肥料有效性的盆栽实验
1)鸡粪谷壳有机肥料有效性评估。取12个花盆(25 cm×20 cm),分为空白组、化肥组(尿素46% TN)和鸡粪谷壳有机肥(以下简称“有机肥”)组,每组4盆,每盆约3 kg土壤,种植15粒空心菜种子。空白组不添加肥料;化肥组在土壤中添加3.88 g尿素(与有机肥组等量的含氮量计算得出);有机肥组在土壤中添加鸡粪谷壳经新型堆肥器堆肥40 d后产生的100 g肥料(1.86 g TN、3.27 g TP、1.57 g TK)。花盆置于户外种植,每日浇水1次,每7 d进行1次大水量灌溉,发芽后栽培30 d采收。
2)MAP肥料有效性评估。采用盆栽实验评估新型堆肥系统回收氨气产生MAP的肥效性。盆栽实验设4个处理组:T1为对照组(不施肥)、T2为有机肥组、T3为有机肥+MAP组(有机肥和MAP各占50%)、T4为MAP组。各处理组的TN含量相同,每组3盆验,每盆约3 kg土壤,种植10粒小白菜种子。空白组不添加肥料;其他组每盆按1 kg土壤添加0.5 gTN计算添加肥料的量。待种子发芽后,每盆保留6~8株生长相近的幼苗进行后期分析。
1.5 分析方法
1)气味、色泽及形状评估。采用感官评估法,每次5人对样品进行样品气味、色泽及形状进行评估。其中,气味评估主要包含粪尿味、臭味较淡、臭味较浓、臭味强烈、无臭5个等级;色泽主要包含灰褐色、褐色、黑色3个等级;样品形状主要有块状、粒状及球状3个等级。
2)温度及pH测定。每天测定肥堆上、中、下3个层次的温度,计算平均值并记录室温;将新鲜堆肥样品与水按1:10(质量体积比)比例混合振荡2 h,上清液测定pH。
3)化学成分测定、种子发芽率测定和16sRNA序列分析。总碳、总氮、水分含量、钾含量测定方法参考文献[14];可溶性糖测定参考文献[15];种子发芽率(GI)的测定参考文献[16];16sRNA序列分析参考文献[17]
2. 结果与讨论
2.1 堆肥过程物料表观变化
根据图2和表2可知,随着堆肥化的进程,堆体表观发生了显著的变化。堆体颜色由最初的灰褐色逐渐转变成黑褐色,由局部的黏稠状逐渐转变为疏松且具有一定结构的状态。此外,随着堆肥时间的延长,鸡粪有机肥料的臭气味逐渐消失,最后无臭味(表2)。该现象可能的原因主要是,微生物降解有机物产生的硫化物及叠氮化物等引起的,之后随着微生物逐渐死亡,使得臭气味消失。物料在反应器中连续发酵40 d后,堆体由灰褐色的带有粪尿臭的块状固体堆肥逐渐形成黑色的无臭味的圆球状(如图2)。在堆肥过程中,堆体表观状态的变化,符合典型腐熟堆肥的情况。
表 2 物料堆肥期间表观状态的变化Table 2. Changes of apparent state of materials during composting堆肥时间/d 气味 色泽 形状 1 粪尿味 灰褐色 块状 2 臭味较淡 灰褐色 块状 5 臭味较浓 灰褐色 粒状 11 臭味强烈 褐色 粒状 34 臭味较浓 褐色 球状 39 臭味较淡 黑色 球状 40 无臭味 黑色 球状 2.2 堆肥过程中物料温度、水分及pH的变化
温度是监测堆肥过程性能的主要参数之一。堆肥的热量是微生物通过降解有机物质,在促进自身生长的同时产生的。由图3(a)可知,新型堆肥器和塔式发酵罐中堆体的温度变化趋势主要分为3个阶段。第1阶段为快速升温期,由起始温度升至峰值温度。新型堆肥器和塔式发酵罐中堆体温度均从第5 d开始快速升温,分别在第9、11 d达到峰值温度,其峰值温度分别为63.2 ℃、52.8 ℃。在堆肥前期,好氧微生物可快速分解物料中的可降解有机物并释放能量,使得堆肥温度急剧升高[17-18]。新型堆肥器在堆肥过程中对物料进行了适当的滚筒式翻动,这有利于微生物的扩繁增殖和氧气的传输,从而提高好氧微生物的活性、物料中有机物的降解速率及能量的释放,因此,新型堆肥器中的堆体升温速率高于塔式发酵罐。第2阶段为缓慢降温期,即堆体中峰值温度缓慢下降至略高于室温的时期。新型堆肥器中堆体温度下降速度低于塔式发酵罐中的堆体。新型堆肥器和塔式发酵罐中堆体的降温期分别需要30及25 d左右。堆体中有机物含量不足,微生物活性及释放热量的下降,导致温度逐渐降低。此外,由于新型堆肥器具有较好的保温效果,因此,堆体温度下降速度较慢。新型堆肥器中堆体温度在第7~30 d保持在50 ℃以上,共23 d,符合高温堆肥的要求(GB7959-1987,粪便无害化卫生标准)。第3阶段为腐熟期,堆肥40 d后,新型堆肥器和塔式发酵罐中的堆体温度几乎与室温保持一致,无法继续往下降,因此,可以认定堆肥反应基本结束。
由于水分含量的高低与微生物活性和温度密切相关,鸡粪谷壳粉堆肥过程保持在适当的水分含量,可有效提高堆肥的效果。堆肥的最佳初始含水量一般在55%~65%,此含水量能够为微生物提供合适的湿度环境[19-20]。因此,在本实验中,鸡粪谷壳的水分含量控制在60%左右。在鸡粪谷壳粉堆肥过程中,水分含量呈现逐渐下降的趋势。由图3(b)可知,堆肥11 d后,新型堆肥器中的物料水分含量由60%逐渐下降到50%,而塔式发酵罐中物料水分由60%下降到40%,经40 d堆肥之后分别降低至29.24%和26%。堆肥过程中物料水分下降的主要原因是,在微生物分解有机质、消耗水分及堆肥过程中,不间断的通气搅拌导致了水分的损失[21-22]。新型堆肥器中,物料中水分损失速率低于塔式发酵罐。这主要是由于:1)在新型堆肥器中散状的物料经过不间断的通气和搅拌结成圆球状阻碍了水分蒸发,而塔式发酵罐中的原料在堆肥过程中是处于散状的;2)在新型堆肥器是一个相对密闭的装置可有效防止水分蒸发,而塔式发酵罐是自然通风且比表面积较大,因而加速了水分的挥发。
由图3(c)可知,新型堆肥器中物料的pH由8.02逐渐增加至8.65,之后下降至8.51,呈现先上升后下降的趋势;而塔式发酵罐中的物料pH也呈现类似的变化,但变化幅度低于新型堆肥器。在新型堆肥器中,堆体温度较高,嗜热微生物代谢蛋白质,导致氨氮的不断产生,最终使得pH持续升高,并且高于塔式发酵罐中的物料pH[23]。而在后期,因物料结构过于致密导致孔隙度过小,不能为微生物提供足够的含氮有机物和O2,造成局部厌氧而导致有机酸积累,最终导致pH降低。
2.3 堆肥时间对种子发芽率(GI)的影响
种子发芽率是评价堆肥腐熟度和植物毒性的重要生物学指标。一般认为,当种子发芽率(GI)达到50%时,病原菌基本被消灭,肥料对植物无毒害影响;如果GI值超过80%则认为堆肥完全腐熟,对植物没有毒性[17]。据图4显示,随着堆肥化的进行,新型堆肥器和塔式发酵罐所得的肥料GI值呈现先增加后保持稳定的趋势。鸡粪谷壳在新型堆肥器处理11 d后,其GI值达到80%左右,可以认为堆肥完全腐熟,之后保持稳定。采用塔式发酵罐堆肥处理24 d后,GI值仅为60%左右,之后保持稳定。表3显示了鸡粪谷壳在新型堆肥器中处理40 d后所得有机肥的主要理化特性,结果显示,鸡粪谷壳有机肥中含有50.53%有机质、1.86%总氮(TN)、3.27%总磷(TP)及1.57%总钾(TK),且无有害菌群,基本达到中华人民共和国农业行业有机肥料标准(NY525-2012)[14]。
表 3 鸡粪谷壳有机肥理化指标和国标的对比Table 3. Comparison of physicochemical indexes of chicken manure-rice chaff organic fertilizer with national standard对比项目 有机质/% TN/% TP/% TK/% TNPK/% 水分/% pH 鸡粪谷壳有机肥 50.53±0.12 1.86±0.31 3.27±0.53 1.57±0.12 6.71±0.85 29.24±0.44 8.46±0.11 国标(NY525-2012)[14] ≥45 — — — ≥5.0 ≤30 5.5~8.5 2.4 堆肥过程中微生物多样性分析
通过高通量测序技术所扩增的16S rDNAV4区域特点,分析了鸡粪谷壳在新型堆肥器中高温好氧发酵过程中3个关键性温度阶段细菌群落多样性变化。图5(a)显示了样品升温期、高温期、降温期在属分类水平上最大丰度排名前10的菌种。在升温期,Olivibacter属、Sphingobacterium属的相对丰富度高于高温期和降温期,这2个菌属均具有降解芳香族化合物功能,可有效降解物料中的纤维素及半纤维素;在进入高温期,随着温度的升高和营养物质的消耗,大量嗜温细菌进入休眠或死亡状态,Oceanisphaera属、Ulvibacter属、Luteimonas属、Paenalcaligenes属等嗜热微生物的相对丰富值逐渐提高,有利于纤维素及木质素等有机物的进一步降解。放线菌的丰度增加为堆肥腐熟度的一个标志[24],在降温期,Paucisalibacillus属、Sporosarcina属、Corynebacterium属于放线菌门的系列,其相对丰度值逐渐升高,这表明堆肥物料基本上已经腐熟。
在粪污有机肥发酵中,由于大肠杆菌及沙门氏菌易随流水污染水源,从而间接危害人群和畜禽的健康,因此被作为肥料的安全检测指标。由图5(b)可知,在高温阶段,大肠杆菌和沙门沙门氏菌数量最多;随着堆肥的进行,2种菌的数量快速下降。可见,在高温堆肥过程中,大肠杆菌和沙门氏菌逐渐被消灭。随着堆肥的进行,部分不适宜在堆肥中生存的菌群逐渐优胜劣汰;新型堆肥器在堆肥过程中可以杀灭有害微生物,达到畜禽粪污无害化处理,以保证有机肥料的安全性。
2.5 鸡粪谷壳有机肥的肥效
图6显示了空心菜经过鸡粪谷壳有机肥、化肥和对照盆栽实验30 d后的生长情况。可以看出,盆栽30 d后,有机肥组的株高明显高于化肥组和对照组。通过对空心菜地上可食部分鲜重的分析发现,对照组及化肥组的平均鲜重分别为2.52和3.26 g,而有机肥组空心菜的平均鲜重为4.36 g,分别比对照组和化肥组增加了42.20%和25.22%。通过图7可知,施加有机肥栽培的空心菜其鲜重和可溶性糖含量均明显高于空白对照组与化肥组,这表明有机肥的施加对空心菜的生长与养分积累起到了促进作用。
2.6 新型高温好氧堆肥器回收氨气产生MAP的肥效
图8显示了不同施肥条件下小白菜的生长情况,可见,新型高温好氧堆肥器回收氨气产生的MAP对盆栽小白菜株高和湿重的提高均有促进作用。结果显示,经过30 d的生长,小白菜的株高在T3组比T2组提高了120%;T4组的也比T2组的提高了40%左右。经过30 d的生长,T3组小白菜地上部分平均湿重为6.02 g,比T2组(4.18 g)和T4组(5.24 g)分别提高了44.02%和14.89%。MAP具有较好的缓释性,若用MAP代替部分氮肥,能有效减少土壤氮素淋洗的损失,从而减少温室气体(NH3)排放,并能起到有缓解土壤酸化等作用。有报道指出,MAP的氮素淋洗损失显著低于尿素,而且其N2O的释放量能够减少75%以上,可为植株的生长提供更为持久的有效养分[25-27]。
3. 结论
1)新型高温好氧堆肥装置具有智能化控制功能,同时并配置了磷酸盐吸收装置以回收堆肥过程中释放的氨气,形成的MAP可作为肥料。
2)鸡粪谷壳混合物(C/N=25)在新型堆肥器堆肥处理40 d后,可形成黑色无臭味、无有害菌群、圆球状的有机肥,其养分基本达到我国有机肥料标准(NY525-2012)。
3)鸡粪谷壳有机肥能够缓慢并稳定地释放氮磷钾等植物生长所需的营养元素,有利于空心菜对营养物的吸收;新型堆肥器回收氨气产生的MPA添加至鸡粪谷壳有机肥中,可进一步提高有机肥的整体肥效。
-
表 1 PPCPs污染物检测条件
Table 1. Detection conditions for PPCPs contaminants
污染物 流动相比例 流速/(mL·min−1) 检测波长/nm 温度/℃ 双酚A 甲醇∶超纯水=70∶30 1.0 225 30 萘普生 甲醇∶0.1%甲酸水=70∶30 1.0 254 30 磺胺嘧啶 甲醇∶0.1%甲酸水=35∶65 1.0 269 30 磺胺甲恶唑 甲醇∶0.1%甲酸水=35∶65 1.0 275 30 -
[1] ABDEL-SHAFY H I, IBRAHIM A M, AL-SULAIMAN A M, et al. Landfill leachate: sources, nature, organic composition, and treatment: An environmental overview[J]. Ain Shams Engineering Journal, 2024, 15(1): 102293. doi: 10.1016/j.asej.2023.102293 [2] AMARAL M C S, MORAVIA W G, LANGE L C, et al. Nanofiltration as post-treatment of MBR treating landfill leachate[J]. Desalination and Water Treatment, 2015, 53(6): 1482-1491. doi: 10.1080/19443994.2014.943061 [3] VAN DER BRUGGEN B, LEJON L, VANDECASTEELE C. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes[J]. Environmental Science & Technology, 2003, 37(17): 3733-3738. [4] KEYIKOGLU R, KARATAS O, REZANIA H, et al. A review on treatment of membrane concentrates generated from landfill leachate treatment processes[J]. Separation and Purification Technology, 2021, 259: 118182. doi: 10.1016/j.seppur.2020.118182 [5] 杨亚新. 紫外催化湿式氧化处理垃圾渗滤液纳滤浓缩液的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [6] 蒋宝军, 李俊生, 杨威, 等. 垃圾渗滤液反渗透浓缩液回灌处理中试研究[J]. 哈尔滨商业大学学报(自然科学版), 2006, 22(6): 36-40. [7] 岳东北, 许玉东, 何亮, 等. 浸没燃烧蒸发工艺处理浓缩渗滤液[J]. 中国给水排水, 2005(7): 71-73. [8] 王磊. 超重力高级氧化法降解水中双酚A的研究[D]. 北京: 北京化工大学, 2022. [9] 何硕, 黄祯晶, 李柏瑛, 等. 高级氧化法处理废水的赤泥综合利用研究进展[J]. 中国资源综合利用, 2023, 41(7): 112-117. [10] 敖蒙蒙, 刘利, 魏健, 等. β-内酰胺类抗生素臭氧氧化机理与降解途径[J]. 土木与环境工程学报(中英文), 2021, 43(6): 187-196. [11] JAE-WUK K, JUWON L, SOOK-HYUN N, et al. Evaluation of the prediction of micropollutant elimination during bromide ion-containing industrial wastewater ozonation using the ROH, O3 value[J]. Chemosphere, 2023, 338: 139450. doi: 10.1016/j.chemosphere.2023.139450 [12] KASHYAP A, RAMASAMY E, RAMALINGAM V, et al. Supramolecular control of singlet oxygen generation[J]. Molecules, 2021, 26(9): 2673. doi: 10.3390/molecules26092673 [13] 邝江濛. 两种典型PPCPs的臭氧氧化降解及机理研究[D]. 北京: 清华大学, 2013. [14] HAORAN Z, LIANPEI Z, MENGTING J, et al. Ozone pretreatment combined with partial denitrification-anammox process for efficient nitrogen removal from nanofiltration concentrate of landfill leachate[J]. Chemical Engineering Journal, 2023, 471: 144641. doi: 10.1016/j.cej.2023.144641 [15] HE Y, ZHANG H, LI J, et al. Treatment of landfill leachate reverse osmosis concentrate from by catalytic ozonation with γ-Al2O3[J]. Environmental Engineering Science, 2017, 35(5): 501-511. [16] HE C, WANG J, WANG C, et al. Catalytic ozonation of bio-treated coking wastewater in continuous pilot- and full-scale system: Efficiency, catalyst deactivation and in-situ regeneration[J]. Water Research, 2020, 183: 116090. doi: 10.1016/j.watres.2020.116090 [17] 张志强, 常娜, 王社平, 等. 微纳米气泡物化特性及其水处理应用研究进展[J]. 中国给水排水, 2023, 39(4): 24-30. [18] HU L, CHEN B, MA J. Micro-/nano- bubbles ozonation for effective industrial wastewater remediation: from lab to pilot-scale application[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110807. doi: 10.1016/j.jece.2023.110807 [19] ZHENG T, WANG Q, ZHANG T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials, 2015, 287: 412-420. doi: 10.1016/j.jhazmat.2015.01.069 [20] 那广水, 张月梅, 陈彤, 等. 发光细菌法评价排污口污水中总有机污染物毒性[J]. 中国环境监测, 2010, 26(5): 61-64. [21] 潘碌亭, 吴锦峰. 聚合硫酸铁制备技术的研究与进展[J]. 工业水处理, 2009, 29(9): 1-5. doi: 10.11894/1005-829x.2009.29(9).1 [22] 游丽华. 混凝和微气泡臭氧氧化组合处理焦化废水生化尾水[D]. 武汉: 华中科技大学, 2020. [23] 高鹏, 任更波, 李本行, 等. 絮凝耦合过硫酸钠氧化处理实际含糖废水[J]. 环境工程学报, 2023, 17(4): 1206-1215. doi: 10.12030/j.cjee.202301016 [24] WU X, GE X, WANG D, et al. Distinct coagulation mechanism and model between alum and high Al13-PACl[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2007, 305(1-3): 89-96. [25] 陈金垒, 龚佳昕, 苏善煜, 等. 聚合硫酸铁对水中聚乙烯微塑料的混凝效果与机理研究[J]. 安全与环境学报, 2024, 24(02): 695-702. [26] CAO S, CHEN L, ZHAO M, et al. Advanced treatment of phosphorus pesticide wastewater using an integrated process of coagulation and ozone catalytic oxidation[J]. Catalysts, 2022, 12(1): 103. doi: 10.3390/catal12010103 [27] GU Z, CHEN W, HE C, et al. Molecular insights into the transformation of refractory organic matter in landfill leachate nanofiltration concentrates during a flocculation and O3/H2O2 treatment[J]. Journal of Hazardous Materials, 2022, 435: 128973. doi: 10.1016/j.jhazmat.2022.128973 [28] AL-MOMANI F, TOURAUD E, DEGORCE-DUMAS J R, et al. Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 153(1): 191-197. [29] WU C, ZHOU Y, SUN X, et al. The recent development of advanced wastewater treatment by ozone and biological aerated filter[J]. Environmental Science and Pollution Research, 2018, 25(12): 1-15. [30] WEI S, XU H, LI G, et al. Coagulation and ozonation treatment of biologically treated wastewater from recycled paper pulping industry: Effect on the change of organic compounds[J]. Environmental Science and Pollution Research, 2023, 30(40): 92482-92494. doi: 10.1007/s11356-023-28803-3 [31] 郑广宏, 于蕾, 夏邦天, 等. 臭氧技术处理印染废水研究进展[J]. 工业用水与废水, 2009, 40(2): 6-10. [32] 钟理, 张浩, 陈英, 等. 臭氧在水中的自分解动力学及反应机理[J]. 华南理工大学学报(自然科学版), 2002(2): 83-86. [33] LIU Y, WANG S, SHI L, et al. Enhanced degradation of atrazine by microbubble ozonation[J]. Environmental Science:Water Research & Technology, 2020, 6(6): 1681-1687. [34] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343-1347. doi: 10.1021/jp0669254 [35] 王新典, 王韶峰, 匡佳, 等. 臭氧—过氧化氢体系处理含苯酚废水的探究[J]. 云南化工, 2023, 50(8): 72-75. [36] 李玉英, 苏琪, 王海燕, 等. 微电解-臭氧化协同降解水杨酸的动力学及毒性研究[J]. 工业水处理, 2019, 39(1): 60-64. [37] 王帅, 况欣怡, 赵紫琴, 等. 高浓度羟基自由基水对室内生物气溶胶消杀的实验研究[J/OL]. 化学工业与工程, 1-7. [2024-02-05].https://doi.org/10.13353/j.issn.1004.9533.20220834. [38] OUEDERNI A, MORA J C, BES R S. Ozone absorption in water: mass transfer and solubility[J]. Ozone:Science & Engineering, 1987, 9(1): 1-12. [39] 贺德春, 郑密密, 黄伟, 等. 污水处理过程中典型PPCPs的污染特征及降解转化研究进展[J/OL]. 环境科学, 1-20. [2024-02-05].https://doi.org/10.13227/j.hjkx.202305189. [40] PRANGYA R R, TIAN C Z, PUSPENDU B, et al. Treatment technologies for emerging contaminants in wastewater treatment plants: A review[J]. Science of the Total Environment, 2021, 753: 141990. doi: 10.1016/j.scitotenv.2020.141990 [41] PACKHAM R F. Some studies of the coagulation of dispersed clays with hydrolyzing salts[J]. Journal of Colloid Science, 1965, 20(1): 81-92. doi: 10.1016/0095-8522(65)90094-2 [42] 王培良, 钱锋, 宋永会, 等. 臭氧氧化降解水中磺胺嘧啶的机理研究[J]. 环境工程技术学报, 2017, 7(4): 451-456. [43] 徐超, 毛晶璘, 冯继勤. 臭氧氧化萘普生的机理及其动力学研究[J]. 浙江工业大学学报, 2014, 42(1): 31-36. [44] 陈娇玉, 孟冠华, 魏旺, 等. 臭氧氧化双酚A的性能及机理[J]. 过程工程学报, 2020, 20(2): 230-236. [45] 金昊, 马富媛, 柴柳英, 等. 臭氧对8种磺胺类抗生素降解效果研究[J]. 生物化工, 2019, 5(2): 57-59. -