[1] ABDEL-SHAFY H I, IBRAHIM A M, AL-SULAIMAN A M, et al. Landfill leachate: sources, nature, organic composition, and treatment: An environmental overview[J]. Ain Shams Engineering Journal, 2024, 15(1): 102293. doi: 10.1016/j.asej.2023.102293
[2] AMARAL M C S, MORAVIA W G, LANGE L C, et al. Nanofiltration as post-treatment of MBR treating landfill leachate[J]. Desalination and Water Treatment, 2015, 53(6): 1482-1491. doi: 10.1080/19443994.2014.943061
[3] VAN DER BRUGGEN B, LEJON L, VANDECASTEELE C. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes[J]. Environmental Science & Technology, 2003, 37(17): 3733-3738.
[4] KEYIKOGLU R, KARATAS O, REZANIA H, et al. A review on treatment of membrane concentrates generated from landfill leachate treatment processes[J]. Separation and Purification Technology, 2021, 259: 118182. doi: 10.1016/j.seppur.2020.118182
[5] 杨亚新. 紫外催化湿式氧化处理垃圾渗滤液纳滤浓缩液的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[6] 蒋宝军, 李俊生, 杨威, 等. 垃圾渗滤液反渗透浓缩液回灌处理中试研究[J]. 哈尔滨商业大学学报(自然科学版), 2006, 22(6): 36-40.
[7] 岳东北, 许玉东, 何亮, 等. 浸没燃烧蒸发工艺处理浓缩渗滤液[J]. 中国给水排水, 2005(7): 71-73.
[8] 王磊. 超重力高级氧化法降解水中双酚A的研究[D]. 北京: 北京化工大学, 2022.
[9] 何硕, 黄祯晶, 李柏瑛, 等. 高级氧化法处理废水的赤泥综合利用研究进展[J]. 中国资源综合利用, 2023, 41(7): 112-117.
[10] 敖蒙蒙, 刘利, 魏健, 等. β-内酰胺类抗生素臭氧氧化机理与降解途径[J]. 土木与环境工程学报(中英文), 2021, 43(6): 187-196.
[11] JAE-WUK K, JUWON L, SOOK-HYUN N, et al. Evaluation of the prediction of micropollutant elimination during bromide ion-containing industrial wastewater ozonation using the ROH, O3 value[J]. Chemosphere, 2023, 338: 139450. doi: 10.1016/j.chemosphere.2023.139450
[12] KASHYAP A, RAMASAMY E, RAMALINGAM V, et al. Supramolecular control of singlet oxygen generation[J]. Molecules, 2021, 26(9): 2673. doi: 10.3390/molecules26092673
[13] 邝江濛. 两种典型PPCPs的臭氧氧化降解及机理研究[D]. 北京: 清华大学, 2013.
[14] HAORAN Z, LIANPEI Z, MENGTING J, et al. Ozone pretreatment combined with partial denitrification-anammox process for efficient nitrogen removal from nanofiltration concentrate of landfill leachate[J]. Chemical Engineering Journal, 2023, 471: 144641. doi: 10.1016/j.cej.2023.144641
[15] HE Y, ZHANG H, LI J, et al. Treatment of landfill leachate reverse osmosis concentrate from by catalytic ozonation with γ-Al2O3[J]. Environmental Engineering Science, 2017, 35(5): 501-511.
[16] HE C, WANG J, WANG C, et al. Catalytic ozonation of bio-treated coking wastewater in continuous pilot- and full-scale system: Efficiency, catalyst deactivation and in-situ regeneration[J]. Water Research, 2020, 183: 116090. doi: 10.1016/j.watres.2020.116090
[17] 张志强, 常娜, 王社平, 等. 微纳米气泡物化特性及其水处理应用研究进展[J]. 中国给水排水, 2023, 39(4): 24-30.
[18] HU L, CHEN B, MA J. Micro-/nano- bubbles ozonation for effective industrial wastewater remediation: from lab to pilot-scale application[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110807. doi: 10.1016/j.jece.2023.110807
[19] ZHENG T, WANG Q, ZHANG T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials, 2015, 287: 412-420. doi: 10.1016/j.jhazmat.2015.01.069
[20] 那广水, 张月梅, 陈彤, 等. 发光细菌法评价排污口污水中总有机污染物毒性[J]. 中国环境监测, 2010, 26(5): 61-64.
[21] 潘碌亭, 吴锦峰. 聚合硫酸铁制备技术的研究与进展[J]. 工业水处理, 2009, 29(9): 1-5. doi: 10.11894/1005-829x.2009.29(9).1
[22] 游丽华. 混凝和微气泡臭氧氧化组合处理焦化废水生化尾水[D]. 武汉: 华中科技大学, 2020.
[23] 高鹏, 任更波, 李本行, 等. 絮凝耦合过硫酸钠氧化处理实际含糖废水[J]. 环境工程学报, 2023, 17(4): 1206-1215. doi: 10.12030/j.cjee.202301016
[24] WU X, GE X, WANG D, et al. Distinct coagulation mechanism and model between alum and high Al13-PACl[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2007, 305(1-3): 89-96.
[25] 陈金垒, 龚佳昕, 苏善煜, 等. 聚合硫酸铁对水中聚乙烯微塑料的混凝效果与机理研究[J]. 安全与环境学报, 2024, 24(02): 695-702.
[26] CAO S, CHEN L, ZHAO M, et al. Advanced treatment of phosphorus pesticide wastewater using an integrated process of coagulation and ozone catalytic oxidation[J]. Catalysts, 2022, 12(1): 103. doi: 10.3390/catal12010103
[27] GU Z, CHEN W, HE C, et al. Molecular insights into the transformation of refractory organic matter in landfill leachate nanofiltration concentrates during a flocculation and O3/H2O2 treatment[J]. Journal of Hazardous Materials, 2022, 435: 128973. doi: 10.1016/j.jhazmat.2022.128973
[28] AL-MOMANI F, TOURAUD E, DEGORCE-DUMAS J R, et al. Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 153(1): 191-197.
[29] WU C, ZHOU Y, SUN X, et al. The recent development of advanced wastewater treatment by ozone and biological aerated filter[J]. Environmental Science and Pollution Research, 2018, 25(12): 1-15.
[30] WEI S, XU H, LI G, et al. Coagulation and ozonation treatment of biologically treated wastewater from recycled paper pulping industry: Effect on the change of organic compounds[J]. Environmental Science and Pollution Research, 2023, 30(40): 92482-92494. doi: 10.1007/s11356-023-28803-3
[31] 郑广宏, 于蕾, 夏邦天, 等. 臭氧技术处理印染废水研究进展[J]. 工业用水与废水, 2009, 40(2): 6-10.
[32] 钟理, 张浩, 陈英, 等. 臭氧在水中的自分解动力学及反应机理[J]. 华南理工大学学报(自然科学版), 2002(2): 83-86.
[33] LIU Y, WANG S, SHI L, et al. Enhanced degradation of atrazine by microbubble ozonation[J]. Environmental Science:Water Research & Technology, 2020, 6(6): 1681-1687.
[34] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343-1347. doi: 10.1021/jp0669254
[35] 王新典, 王韶峰, 匡佳, 等. 臭氧—过氧化氢体系处理含苯酚废水的探究[J]. 云南化工, 2023, 50(8): 72-75.
[36] 李玉英, 苏琪, 王海燕, 等. 微电解-臭氧化协同降解水杨酸的动力学及毒性研究[J]. 工业水处理, 2019, 39(1): 60-64.
[37] 王帅, 况欣怡, 赵紫琴, 等. 高浓度羟基自由基水对室内生物气溶胶消杀的实验研究[J/OL]. 化学工业与工程, 1-7. [2024-02-05].https://doi.org/10.13353/j.issn.1004.9533.20220834.
[38] OUEDERNI A, MORA J C, BES R S. Ozone absorption in water: mass transfer and solubility[J]. Ozone:Science & Engineering, 1987, 9(1): 1-12.
[39] 贺德春, 郑密密, 黄伟, 等. 污水处理过程中典型PPCPs的污染特征及降解转化研究进展[J/OL]. 环境科学, 1-20. [2024-02-05].https://doi.org/10.13227/j.hjkx.202305189.
[40] PRANGYA R R, TIAN C Z, PUSPENDU B, et al. Treatment technologies for emerging contaminants in wastewater treatment plants: A review[J]. Science of the Total Environment, 2021, 753: 141990. doi: 10.1016/j.scitotenv.2020.141990
[41] PACKHAM R F. Some studies of the coagulation of dispersed clays with hydrolyzing salts[J]. Journal of Colloid Science, 1965, 20(1): 81-92. doi: 10.1016/0095-8522(65)90094-2
[42] 王培良, 钱锋, 宋永会, 等. 臭氧氧化降解水中磺胺嘧啶的机理研究[J]. 环境工程技术学报, 2017, 7(4): 451-456.
[43] 徐超, 毛晶璘, 冯继勤. 臭氧氧化萘普生的机理及其动力学研究[J]. 浙江工业大学学报, 2014, 42(1): 31-36.
[44] 陈娇玉, 孟冠华, 魏旺, 等. 臭氧氧化双酚A的性能及机理[J]. 过程工程学报, 2020, 20(2): 230-236.
[45] 金昊, 马富媛, 柴柳英, 等. 臭氧对8种磺胺类抗生素降解效果研究[J]. 生物化工, 2019, 5(2): 57-59.