-
在饮用水处理过程中,氯因其持久氧化性及经济性是目前最为常用的氧化剂和消毒剂。然而,氯与有机物反应会生成多种具有致畸性、致癌性消毒副产物(disinfection by-products,DBPs)。我国《生活饮用水卫生标准》(GB 5749-2022)对三卤甲烷(trihalomethanes,THMs)和卤乙酸(haloacetic acid,HAAs)进行了明确管控。除了已知的包括THMs、HAAs、卤代苯酚、亚硝铵等多种DBPs之外,饮用水中还存在着大量具有较高潜在毒性风险的未知DBPs。
活性炭(activated carbon,AC)作为一种高效、经济的吸附剂广泛应用于饮用水厂和家用净水过滤系统中[1]。在预处理阶段,粉末活性炭常用于解决突发性微量污染物问题[2]。在净水过滤器中,AC可以作为其吸附剂的主要组分[3]。因此,在预处理阶段或者家用净水器端,AC不可避免的会与氯接触。之前的研究发现[4],AC本身也可与氯反应生成毒性更强的DBPs。且由于AC的催化作用,其可催化次氯酸产生氯自由基(Cl·),导致不同的氯化产物。BULMAN等[5]发现,氯光解过程中形成的多种活性氧化剂会诱导形成新兴的氯化DBPs。VOUDRIAS等[6]也发现AC会促进游离氯氧化酚类物质形成新的副产物。此外,AC作为优良的吸附剂既可以吸附溶解性天然有机物(dissolved organic matter,DOM),也可以吸附生成的DBPs,导致其对DOM氯化过程中DBPs的生成具有复杂的影响效应。因此,深入探究AC对DOM氯化过程中产生DBPs释放风险的影响具有重要意义。
傅立叶变换离子回旋共振质谱(fourier transform ion cyclotron resonance mass spectrometry,FTICR-MS)是一种高分辨率质谱仪器。为了分析的精确性,其采用较长的采集时间和上百次的谱图叠加[7],用于检测DOM中的分子结构,也可鉴定高分子质量的有机化合物[8-9]。FTICR-MS可通过分子式的元素比率和芳香度信息来分析DOM的组分特征,从而研究DOM与生物、自然介质之间的关系[10]。ZHANG等[11]通过FTICR-MS对不同分子质量DOM馏分的光学和分子特征进行了研究,发现高度不饱和的芳香族物质富含电子,其与次氯酸表现出高反应性。AC氯化后会生成分子质量为1 000~10 000 Da的副产物,但具体的种类及AC对DOM氯化的影响机制还尚未明确。
因此,本研究通过以是否在氯化过程中投加AC为变量,达到以下目的:1)研究AC对DOM氯化过程中产生已知DBPs的影响,并评价其出水产物毒性;2)通过FTICR-MS技术识别并明确AC对DOM氯化过程中产生的氯化产物种类的影响;3)通过FTICR-MS技术阐明AC对氯化过程中DOM特性转化的影响。
活性炭对天然有机物氯化过程消毒副产物生成的影响及作用机制
Effect and mechanism of activated carbon on the generation of disinfection by-products during chlorination process of dissolved organic matter
-
摘要: 活性炭(AC)与氯均为水处理过程中广泛使用的药剂,在实际使用过程中二者的接触不可避免,因此,深入研究AC对于氯化过程中消毒副产物(DBPs)生成的影响对于饮用水安全有重要意义。本研究对比了AC对于溶解性天然有机物(DOM)氯化过程中已知DBPs(包括三卤甲烷(THMs)和卤乙酸(HAAs))生成释放的影响,并采用傅立叶变换离子回旋共振质谱(FTICR-MS)技术检测分析其滤后水的未知氯化副产物及有机物变化规律。结果表明,在DOM氯化过程中,AC存在时释放的THMs和HAAs浓度较低,但氯的衰减速率更快,这是由于AC本身的强还原性及其他氯代副产物生成导致的。进一步通过FTICR-MS分析未知氯代产物及DOM的变化发现,在2种条件下有163种相同的氯化产物,与不存在AC时对比,AC存在时生成了不同的氯化产物中有57种。此外,AC存在时CHOCl、CHONCl和CHONSCl分子式的数量减少,而CHOSCl分子式的数量增加,并且具有芳香结构的DOM更容易被转化。通过电子自旋共振谱仪(ESR)分析发现AC表面的持久性自由基激发次氯酸钠反应生成的氯自由基(Cl·)是导致氯化产物变化的主要原因。本研究揭示了AC对氯化过程DBPs的生成影响,对于饮用水DBPs控制具有重要意义。Abstract: Activated carbon (AC) and chlorine are both widely used agents in the water treatment process, and their contact is inevitable during the actual use. Therefore, it is important to study the effects of AC on the generation of disinfection by-products (DBPs) during the chlorination process for the safety of drinking water. Therefore, in this study, the effects of AC on the concentration of known DBPs including trihalomethanes (THMs) and haloacetic acids (HAAs) formed during the chlorination of dissolved organic matter (DOM) were compared, and the unknown chlorination byproducts and the transformation of organics in effluent were analyzed by using the Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) technique detection. The results showed that during DOM chlorination, lower concentrations of THMs and HAAs were released in the presence of AC, but the rate of chlorine decay was faster, which was due to the strong reducing property of AC itself and the generation of other chlorinated by-products. Further analysis of the unknown chlorinated products and changes in DOM by FTICR-MS revealed that there were 163 identical chlorination products under the two conditions, and 57 of the different chlorination products were generated in the presence of AC compared to the absence of AC. In addition, the numbers of CHOCl, CHONCl, and CHONSCl molecular formulas decreased, while the number of CHOSCl molecular formulas increased, and DOM with an aromatic structure was more easily converted in the presence of AC. The main reason for the change in chlorination products is the generation of chlorine radicals (Cl·) from the reaction of sodium hypochlorite activated by the persistent radicals on the surface of AC through electron spin resonance spectroscopy (ESR) analysis. This study reveals the effects of AC on the generation of DBPs during chlorination, which is important for the control of DBPs in drinking water.
-
Key words:
- disinfection by-products /
- activated carbon /
- chlorination /
- FTICR-MS /
- chlorine radical
-
表 1 RW氯化过程中的氯化产物分子式分子指数的强度加权平均值
Table 1. Intensity-weighted average of molecular indices of molecular formulae for chlorination products during the RW chlorination process
分子式 水样 H/CW O/CW DBEW AImod,w 总强度 相对丰度/% CHOCl 不含AC 1.29 0.50 6.98 0.22 4.60×109 93.77 含AC 1.23 0.54 7.24 0.25 2.8×109 94.38 CHONCl 不含AC 1.42 0.28 8.84 0.17 1.48×108 3.41 含AC 1.33 0.33 9.22 0.24 7.52×107 2.54 CHOSCl 不含AC 1.68 0.21 7.28 0.03 6.8×107 1.37 含AC 1.67 0.51 3.69 -0.31 6.15×107 2.07 CHONSCl 不含AC 1.6 0.30 7.02 -0.14 7.2×107 1.45 含AC 0.49 0.13 0.65 -0.12 4.02×107 1.01 表 2 RW氯化过程后的非氯化产物分子式分子指数的强度加权平均值
Table 2. Intensity-weighted average of molecular indices of molecular formulae for non-chlorinated products after the RW chlorination process
分子式 水样 H/CW O/CW DBEW AImod,w 总强度 相对丰度/% CHO 不含AC 1.23 0.52 9.54 0.24 1.79×1011 80.56 含AC 1.23 0.52 9.35 0.23 1.79×1011 78.06 CHON 不含AC 1.20 0.52 9.99 0.23 3.21×1010 14.45 含AC 1.20 0.52 9.88 0.23 3.11×1010 13.56 CHOS 不含AC 1.40 0.49 6.45 0.07 8.5×109 3.83 含AC 1.42 0.53 6.40 0.03 1.54×1010 6.71 CHONS 不含AC 1.51 0.55 7.81 -0.14 2.58×109 1.16 含AC 1.55 0.60 7.12 -0.22 3.82×109 1.67 -
[1] MENYA E, JJAGWE J, KALIBBALA H M, et al. Progress in deployment of biomass-based activated carbon in point-of-use filters for removal of emerging contaminants from water: A review[J]. Chemical Engineering Research & Design, 2023, 192: 412-40. [2] LUO Y, GUO W, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473: 619-641. [3] 滕恺, 武道吉, 任会学, 等. 家用净水器净水材料标准与卫生安全性探讨[J]. 净水技术, 2019, 38(9): 68-74+99. [4] HUANG X, YU Y, CHEN H, et al. Disinfection by-product formation and toxicity evaluation for chlorination with powered activated carbon[J]. Water Research, 2021, 205: 117660. doi: 10.1016/j.watres.2021.117660 [5] BULMAN D M, REMUCAL C K. Role of reactive halogen species in disinfection byproduct formation during chlorine photolysis[J]. Environmental Science & Technology, 2020, 54(15): 9629-9639. [6] VOUDRIAS E A, LARSON R A, SNOEYINK V L. Effects of activated carbon on the reactions of free chlorine with phenols[J]. Environmental Science & Technology, 1985, 19(5): 441-449. [7] 马超, 倪洪星, 戚羽霖. 超高效液相色谱-傅里叶变换离子回旋共振质谱法解析溶解性有机质的化学多样性[J]. 色谱, 2023, 41(8): 662-672. [8] LAVONEN E E, GONSIOR M, TRANVIK L J, et al. Selective chlorination of natural organic matter: identification of previously unknown disinfection byproducts[J]. Environmental Science & Technology, 2013, 47(5): 2264-2271. [9] ZHANG H, ZHANG Y, SHI Q, et al. Study on transformation of natural organic matter in source water during chlorination and its chlorinated products using ultrahigh resolution mass spectrometry[J]. Environmental Science & Technology, 2012, 46(8): 4396-4402. [10] HERTKORN N, RUECKER C, MERINGER M, et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems[J]. Analytical and Bioanalytical Chemistry, 2007, 389(5): 1311-1327. doi: 10.1007/s00216-007-1577-4 [11] ZHANG X, KANG J, CHU W, et al. Spectral and mass spectrometric characteristics of different molecular weight fractions of dissolved organic matter[J]. Separation and Purification Technology, 2020, 253: 117390. doi: 10.1016/j.seppur.2020.117390 [12] SINHA R, GUPTA A K, GHOSAL P S. A review on trihalomethanes and haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106511. doi: 10.1016/j.jece.2021.106511 [13] WANG Y, XIANG Y, DOS SANTOS M M, et al. UV/chlorine and chlorination of effluent organic matter fractions: Tracing nitrogenous DBPs using FT-ICR mass spectrometry[J]. Water Research, 2023, 231: 119646. doi: 10.1016/j.watres.2023.119646 [14] VOUDRIAS E A, LARSON R A, SNOEYINK V L. Importance of surface free-radicals in the reactivity of antigranulocytes activated carbon under water-treatment conditions[J]. Carbon, 1987, 25(4): 503-515. doi: 10.1016/0008-6223(87)90191-6 [15] LEI Y, LEI X, WESTERHOFF P, et al. Reactivity of chlorine radicals (Cl• and Cl2•-) with dissolved organic matter and the formation of chlorinated byproducts[J]. Environmental Science & Technology, 2021, 55(1): 689-699. [16] BEN W, SUN P, HUANG C-H. Effects of combined UV and chlorine treatment on chloroform formation from triclosan[J]. Chemosphere, 2016, 150: 715-722. doi: 10.1016/j.chemosphere.2015.12.071 [17] SUN P, LEE W N, ZHANG R, et al. Degradation of deet and caffeine under UV/chlorine and simulated sunlight/chlorine conditions[J]. Environmental Science & Technology, 2016, 50(24): 13265-13273. [18] HAO Z, SHI F, CAO D, et al. Freezing-induced bromate reduction by dissolved organic matter and the formation of organobromine compounds[J]. Environmental Science & Technology, 2020, 54(3): 1668-1676. [19] 王雪凝, 张炳亮, 潘丙才. 市政污水二级出水中溶解性有机质在紫外/氯处理过程中的转化特性[J]. 环境科学, 2021, 42(8): 3847-3857. [20] LEENHEER J A, CROUé J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1): 18A-26A. [21] ERSAN M S, LIU C, AMY G, et al. The interplay between natural organic matter and bromide on bromine substitution[J]. Science of the Total Environment, 2019, 646: 1172-1181. doi: 10.1016/j.scitotenv.2018.07.384 [22] ZHANG W, ZHOU S, WU Y, et al. Computerized pathway generator for the UV/free chlorine process: prediction of byproducts and reactions[J]. Environmental Science & Technology, 2021, 55(4): 2608-2617. [23] ZHANG Y, LI J, BAI J, et al. Total organic carbon and total nitrogen removal and simultaneous electricity generation for nitrogen-containing wastewater based on the catalytic reactions of hydroxyl and chlorine radicals[J]. Applied Catalysis B-Environmental, 2018, 238: 168-176. doi: 10.1016/j.apcatb.2018.07.036 [24] LEI Y, CHENG S, LUO N, et al. Rate constants and mechanisms of the reactions of Cl• and Cl2•- with trace organic contaminants[J]. Environmental Science & Technology, 2019, 53(19): 11170-11182.