[1] LI Y, CAO P, WANG S, et al. Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system[J]. Bioresource Technology, 2022, 347: 126691. doi: 10.1016/j.biortech.2022.126691
[2] SONG Y, WANG L, QIANG X, et al. An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes[J]. Journal of Water Process Engineering, 2023, 55: 104242. doi: 10.1016/j.jwpe.2023.104242
[3] PAN Z, SONG M, ZENG B, et al. Novel cetyltrimethylammonium bromide modified mixed adsorbent for efficient treatment of dyeing and printing wastewater[J]. Process Safety and Environmental Protection, 2023, 176: 560-567. doi: 10.1016/j.psep.2023.06.003
[4] TU Y, SHAO G, ZHANG W, et al. The degradation of printing and dyeing wastewater by manganese-based catalysts[J]. Science of the Total Environment, 2022, 828: 154390. doi: 10.1016/j.scitotenv.2022.154390
[5] LU X, WANG H, CHEN J, et al. Negatively charged hollow crosslinked aromatic polymer fiber membrane for high-efficiency removal of cationic dyes in wastewater[J]. Chemical Engineering Journal, 2022, 433: 133650. doi: 10.1016/j.cej.2021.133650
[6] LIU X, CHEN Z, DU W, et al. Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption[J]. Journal of Environmental Management, 2022, 311: 114775. doi: 10.1016/j.jenvman.2022.114775
[7] YANG L, REN X, ZHANG Y, et al. One-step synthesis of a heterogeneous catalyst: Cu+-decorated triazine-based g-C3N4 nanosheet formation and catalytic mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105558. doi: 10.1016/j.jece.2021.105558
[8] FANG G, DENG Y, HUANG M, et al. A mechanistic understanding of hydrogen peroxide decomposition by vanadium minerals for diethyl phthalate degradation[J]. Environmental Science & Technology, 2018, 52(4): 2178-2185.
[9] HUANG H, JIANG L, YANG J, et al. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113110. doi: 10.1016/j.rser.2022.113110
[10] WANG W, ZHOU C, YANG Y, et al. Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further?[J]. Chemical Engineering Journal, 2021, 404: 126540. doi: 10.1016/j.cej.2020.126540
[11] LI J, HUANG J, ZENG G, et al. Efficient photosynthesis of H2O2 via two-electron oxygen reduction reaction by defective g-C3N4 with terminal cyano groups and nitrogen vacancies[J]. Chemical Engineering Journal, 2023, 463: 142512. doi: 10.1016/j.cej.2023.142512
[12] WANG Y, HE Y, CHI Y, et al. Construction of S-scheme pn heterojunction between protonated g-C3N4 and α-MnS nanosphere for photocatalytic H2O2 production and in situ degradation of oxytetracycline[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109968. doi: 10.1016/j.jece.2023.109968
[13] SONG T, ZHANG X, MATRAS-POSTOLEK K, et al. Cobalt clusters on g-C3N4 nanosheets for enhanced H2/H2O2 generation and NO removal[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108747. doi: 10.1016/j.jece.2022.108747
[14] JIANG Y, LIU Q, TAN K M, et al. Insights into mechanisms, kinetics and pathway of continuous visible-light photodegradation of PPCPs via porous g-C3N4 with highly dispersed Fe (III) active sites[J]. Chemical Engineering Journal, 2021, 423: 130095. doi: 10.1016/j.cej.2021.130095
[15] MANFRED G, EBERHARDT G, RAMIREZ E. Does the reaction of Cu+ with H2O2 give OH radicals: A study of aromatic hydroxylation[J]. Journal of Organic Chemistry, 1989, 54: 5922-5926. doi: 10.1021/jo00286a024
[16] LI X, GAN X. Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108290. doi: 10.1016/j.jece.2022.108290
[17] NING S, XU H, QI Y, et al. Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co–N species anchored Co@C hybrid[J]. ACS Catalysis, 2020, 10(8): 4726-4736. doi: 10.1021/acscatal.9b04963
[18] PALANIVEL B, HOSSAIN M S, REDDY I N, et al. Chemical oxidants (H2O2 and persulfate) activated photo-Fenton like degradation reaction using sol-gel derived g-C3N4/ZnCo2O4 nanocomposite[J]. Diamond and Related Materials, 2022, 130: 109413. doi: 10.1016/j.diamond.2022.109413
[19] JEGHAN S M N, DO J Y, KANG M. Fabrication of flower-like copper cobaltite/graphitic-carbon nitride (CuCo2O4/g-C3N4) composite with superior photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 405-415. doi: 10.1016/j.jiec.2017.08.049
[20] DONG Q, CHEN Y, WANG L, et al. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst[J]. Applied Surface Science, 2017, 426: 1133-1140. doi: 10.1016/j.apsusc.2017.07.254
[21] REN X, ZHANG Y, YANG L, et al. Degradation of ofloxacin by peroxymonosulfate activated with cobalt-doped graphitic carbon nitride: Mechanism and performance[J]. Inorganic Chemistry Communications, 2021, 133: 108863. doi: 10.1016/j.inoche.2021.108863
[22] CAO J, NIE W, HUANG L, et al. Photocatalytic activation of sulfite by nitrogen vacancy modified graphitic carbon nitride for efficient degradation of carbamazepine[J]. Applied Catalysis B:Environmental, 2019, 241: 18-27. doi: 10.1016/j.apcatb.2018.09.007
[23] GUAN C, JIANG J, PANG S, et al. Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation[J]. Chemical Engineering Journal, 2020, 387: 123726. doi: 10.1016/j.cej.2019.123726
[24] FENG Y, LIAO C, KONG L, et al. Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process[J]. Journal of Hazardous Materials, 2018, 354: 63-71. doi: 10.1016/j.jhazmat.2018.04.056
[25] YANG D, JIANG T, WU T, et al. Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–g-C3N4[J]. Catalysis Science & Technology, 2016, 6(1): 193-200.
[26] DING Z, CHEN X, ANTONIETTI M, et al. Synthesis of transition metal‐modified carbon nitride polymers for selective hydrocarbon oxidation[J]. ChemSusChem, 2011, 4(2): 274-281. doi: 10.1002/cssc.201000149
[27] WANG H, BIAN Y, HU J, et al. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation[J]. Applied Catalysis B:Environmental, 2018, 238: 592-598. doi: 10.1016/j.apcatb.2018.07.023
[28] ZHANG L, DING N, HASHIMOTO M, et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production[J]. Nano Research, 2018, 11: 2295-2309. doi: 10.1007/s12274-017-1853-3
[29] ZHANG S, HU C, JI H, et al. Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance[J]. Applied Surface Science, 2019, 478: 304-312. doi: 10.1016/j.apsusc.2019.01.270
[30] YAN W, YAN L, JING C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms[J]. Applied Catalysis B:Environmental, 2019, 244: 475-485. doi: 10.1016/j.apcatb.2018.11.069
[31] DONG X, DUAN X, SUN Z, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B:Environmental, 2020, 261: 118214. doi: 10.1016/j.apcatb.2019.118214
[32] HAO R, WANG G, TANG H, et al. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016, 187: 47-58. doi: 10.1016/j.apcatb.2016.01.026
[33] ZHANG H, TAN H-R, JAENICKE S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen[J]. Journal of catalysis, 2020, 389: 19-28. doi: 10.1016/j.jcat.2020.05.018
[34] FANG M, XIA W, YAO T, et al. Boosting CO2 electroreduction to multi‐carbon products via oxygen‐rich vacancies and Ce4+‐O2‐‐Cu+ structure in Cu/CeO2 for Stabilizing Cu+[J]. ChemCatChem: e202301266.
[35] GAO Y, YU G, LIU K, et al. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework[J]. Chemical Engineering Journal, 2017, 330: 157-165. doi: 10.1016/j.cej.2017.06.139
[36] DUNPHY GUZMAN K A, FINNEGAN M P, BANFIELD J F. Influence of surface potential on aggregation and transport of titania nanoparticles[J]. Environmental Science & Technology, 2006, 40(24): 7688-7693.
[37] LI Y, CHEN M Y, LU B A, et al. Unravelling the role of hydrogen peroxide in pH-dependent ORR performance of Mn-NC catalysts[J]. Applied Catalysis B:Environmental, 2024, 342: 123458. doi: 10.1016/j.apcatb.2023.123458
[38] RAMASWAMY N, MUKERJEE S. Influence of inner-and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media[J]. The Journal of Physical Chemistry C, 2011, 115(36): 18015-18026. doi: 10.1021/jp204680p
[39] HU L, ZHANG G, LIU M, et al. Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016
[40] SUI C, NIE Z, LIU H, et al. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater[J]. Journal of Environmental Sciences, 2024, 135: 86-96. doi: 10.1016/j.jes.2023.01.010
[41] HUI W, DENG X, ZHU Y, et al. Insight for FeS2/MoS2@SiO2 nanoreactor with spatial separation of H2O2 activation sites and pollutant adsorption sites: Enhanced H2O2 activation efficiency and pollutant degradation performance in Fenton reaction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 678: 132496. doi: 10.1016/j.colsurfa.2023.132496
[42] DING Y, ZHU L, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2013, 129: 153-62. doi: 10.1016/j.apcatb.2012.09.015