-
传统城镇污水厂在污水处理过程中会消耗大量电能和药剂,导致处理成本增加。同步硝化反硝化(simultaneous nitrification and denitrification,SND)在同一个反应池内实现硝化和反硝化,可显著缩短反应时间、降低曝气能耗。SND在各种结构的处理工艺中均可实现,其反应机理包括:利用活性污泥絮体内部缺氧环境、利用生物膜[1-3]或颗粒污泥[4-6]内缺氧环境,或者利用异养硝化-好氧反硝化菌(heterotrophic nitrification-aerobic denitrification,HD-AN)[7-8]等。
实现SND的关键在于通过控制DO创造合适的微氧或缺氧环境,同时提供充足的碳源。其控制策略包括:将好氧池DO控制在较低水平(一般为0.3~1.0 mg·L−1)[9-10],或者间歇曝气[11],缩短好氧水力停留时间(hydrolic retention time,HRT)[12],以及分段进水等。利用聚磷菌(phosphate accumulating organisms,PAOs)和聚糖菌(glycogen accumulating organisms,GAOs)等菌种储存聚羟基链烷酸(poly-hydroxyalkanoates,PHAs)的特性,可实现内碳源反硝化;通过延长厌氧HRT、缩短好氧HRT,可以强化厌氧阶段PHAs的合成,改善好氧阶段SND效果[11-12]。SND工艺可与多种工艺进行优化组合。比如,SND可与短程硝化工艺组合,实现同步短程硝化-反硝化[6, 11, 13-14]。SND也可与强化生物除磷工艺(enhanced biological phosphorus removal,EBPR)结合,实现同步硝化反硝化除磷(simultaneous nitrification, denitrification and phosphorus removal process,SNDPR)[5-6, 9-13]。但现有研究大多基于序批式反应器(sequencing batch reactor,SBR),对于连续流工艺的SND强化策略和最佳工艺参数等方面研究较少,缺乏相关工艺优化和运行经验。
本研究通过对A2O-MBR工艺进行改造建立梯度曝气A2O2-MBR工艺,设置单独的低氧池和好氧池,进行分级梯度曝气,通过逐步降低DO浓度强化SND效果,考察了对低C/N比污水的处理效果,在改善TN去除效果的同时降低曝气能耗,为污水厂提质增效提供技术参考。
梯度曝气A2O2-MBR工艺强化同步硝化反硝化效能
Enhanced SND performance of step-wise aeration A2O2-MBR process
-
摘要: 针对城镇污水厂对低C/N比污水脱氮效果差、能耗高的问题,研发了梯度曝气A2O2-MBR工艺,设置单独的低氧池(O1池)和好氧池(O2池),O1和O2池DO质量浓度逐步降至0.6 mg·L−1和1.7 mg·L−1。进水碳氮比(C/N)从6.0逐步降至5.0和4.0,总氮(TN)去除率保持在85%左右。O1和O2池同步硝化反硝化效率保持在90%左右,O池(O1池+O2池)和膜池对TN去除的贡献在82.5%以上,对COD去除的贡献在64.9%~83.2%。高通量测序结果表明,在低DO低C/N比条件下,系统中亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)丰度下降,反硝化聚糖菌(denitrifying glycogen accumulating organisms,DGAOs)丰度增加;反硝化菌类群丰富,其中Pseudomonas的丰度最高,Thauera和Zoogloea在低C/N比条件下丰度增加。大部分TN通过常规异养反硝化菌(denitrifying bacteria,DNB)去除,DGAOs的贡献较小。与启动阶段相比,O1池和O2池总曝气量下降了44.2%。结果表明,通过采用梯度曝气方式,并逐步降低DO浓度,可促进功能菌的富集,强化SND作用,改善TN去除效果,并降低能耗。Abstract: Aiming at poor denitrification effect and high energy consumption when treating the wastewater with the low C/N ratio in wastewater treatment plant (WWTPs), a step-wise aeration A2O2-MBR process was developed. The separated low-oxic zone(O1) and oxic zone(O2) were design with the DO concentrations decreased gradually to 0.6 mg·L−1 and 1.7 mg·L−1, respectively. When the influent C/N ratio decreased from 6.0 to 5.0 and 4.0, the total nitrogen (TN) removal efficiency maintained at around 85%. The simultaneous nitrification and denitrification (SND) efficiency of the O1 and O2 zones kept at around 90%. Both O zones (O1+O2) and membrane zones contributed to above 82.5% of TN removal, and 64.9%~83.2% of COD removal. High-throughput gene sequencing showed that, under low DO and low C/N ratio conditions, the abundance of nitrite-oxidizing bacteria (NOB) decreased, while the abundance of denitrifying glycogen accumulating organisms (DGAOs) increased. Rich denitrifiers occurrred, of which the abundance of Pseudomonas was highest. Besides, the abundance of Thauera and Zoogloea increased under low C/N ratio condition. Most of TN was removed by ordinary denitrifying bacteria (DNB), rather than DGAOs. Compared with the startup stage, the total aeration rate of the O1 and O2 zones decreased by 44.2%. The results showed that the step-wise aeration mode could gradually lower the DO concentrations, enrich the functional bacteria, then enhance the SND effect, increase TN removal, save the energy consumption.
-
表 1 A2O2-MBR工艺各阶段工艺参数
Table 1. Operation parameters of the A2O2-MBR process at each stage
运行时间/d 进水COD/
(mg·L−1)C/N比 DO质量浓度/(mg·L−1) 曝气量/(mL·min−1) 低氧池 好氧池 低氧池 好氧池1 好氧池2 1~25 300 6.0 2.76 3.99 400 640 640 26~40 300 6.0 1.98 3.34 320 600 600 41~58 300 6.0 1.12 1.64 280 500 500 59~87 300 6.0 1.29 1.96 280 600 600 88~136 300 6.0 1.46 2.08 240~280 500 600 137~171 300 6.0 0.89 1.95 200 500 500~600 172~192 300 6.0 0.70 1.79 120~160 500 500 193~213 300 6.0 0.48 1.82 100 500 500 214~283 300 6.0 0.58 1.76 120 500 500 284~333 250 5.0 0.70 1.71 120 500 500 334~356 200 4.0 0.70 1.69 120 500 500 357~375 200 4.0 0.63 1.73 100 500 500 376~393 200 4.0 0.58 1.75 80 500 500 表 2 高通量测序污泥样品信息
Table 2. The activated sludge samples used for high-throughput gene sequencing analysis
样品
编号取样时间/d C/N 低氧池DO
浓度/(mg·L−1)TN去除率/% S1 — — — — A1 26 6 2.47 77.5 B1 194 6 0.59 82.8 B2 278 6 0.59 86.1 C1 333 5 0.66 86.3 C2 375 4 0.71 84.6 表 3 A2O2-MBR工艺不同阶段氨氮和TN去除效果
Table 3. Ammonia and TN removal effects at various stages of the A2O2-MBR process
时间/d 进水C/N比 平均DO质量浓度/(mg·L−1) NH4+-N平均去除率/% TN平均去除率/% 低氧池 好氧池 1~87 6.0 1.80±0.61 2.73±0.93 97.0±1.8 78.9±1.8 88~201 6.0 1.06±0.33 1.96±0.14 98.4±1.0 79.6±1.3 202~234 6.0 0.50±0.08 1.87±0.08 92.2±1.5 76.3±2.8 235~283 6.0 0.60±0.07 1.68±0.08 97.8±0.9 85.0±1.1 284~333 5.0 0.70±0.05 1.71±0.06 97.6±0.9 84.9±1.4 334~356 4.0 0.70±0.05 1.69±0.08 98.2±0.4 80.9±1.5 357~393 4.0 0.61±0.05 1.74±0.04 98.3±0.4 84.7±0.7 表 4 不同SND工艺参数和处理效果比较
Table 4. The operating parameters and removal effects of various SND process
工艺 进水C/N HRT/h 好氧HRT/h DO/(mg·L−1) SND效率/% TN去除率/% 参考文献 SBR 5~10 16 7 0.3 60~88 70~91 [10] SBR 6 12 8 1~2 79.2 89.6 [31] SBR 3.5 14.6 6.7 1.0 49.3 77.7 [12] AOA-SBR 3.5 20 8 0.5 59.6 92.1 [13] AOA-SBR 5 15 5~10 0.3 100 98.9 [32] SBR-AGS 3.4 14~18 10~14 0.1~0.7 73.1 81.4 [6] SBR-AGS 6.7 5.2 3.3 1.8 75 80~90 [33] SBR-AGS 3~4 24 12 0.5~1.0 / 77 [34] 好氧/微氧固定床 4 12 12 4/0.5 / 97.6 [35] SBBR 2.6~4.1 15 11 2.5 70.57 82.95 [17] AOA+膜 4.4 14 3.9 1~2 / 92.2 [18] MUCT 5~7 / / 1.2~2 35.3 85.5 [36] UCT-MBR 7.3 15.5 / 0.9 / 90.27 [37] OOA-MBR 10.9 4.8 2.4 1.2~1.6 83.67 77.7 [1] 氧化沟-MABR 1.5~2.3 24 / 1~4 51~71 85.7 [38] A2O2-MBR 4 12 6 0.6 90 84.7 本文 -
[1] 李宁, 钟为章, 苗志加, 等. 两段进水生物膜法OOA-MBR工艺强化生物脱氮[J]. 环境工程学报, 2016, 10(9): 4849-4894. [2] JIA Y, ZHOU M, CHEN Y, et al. Insight into short-cut of simultaneous nitrification and denitrification process in moving bed biofilm reactor: Effects of carbon to nitrogen ratio[J]. Chemical Engineering Journal, 2020, 400: 25905. [3] IANNACONE F, CAPUA FD, GRANATA F, et al. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor[J]. Journal of Environmental Management, 2019, 250: 109518. doi: 10.1016/j.jenvman.2019.109518 [4] 王景峰, 王暄, 季民, 等. 颗粒污泥膜生物反应器同步硝化反硝化[J]. 中国环境科学, 2006, 26(4): 436-440. [5] HE Q, ZHANG W, ZHANG S, et al. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326: 1223-1231. doi: 10.1016/j.cej.2017.06.071 [6] YUAN C, WANG B, PENG Y, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257: 127097. doi: 10.1016/j.chemosphere.2020.127097 [7] 闫苗苗, 张海涵, 钊珍芳, 等. 生物脱氮技术中好氧反硝化细菌的代谢及应用研究进展[J]. 环境科学研究, 2020, 33(3): 668-676. [8] XI H, ZHOU X, ARSLAN M, et al. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment[J]. Science of the Total Environment, 2022, 805: 150212. doi: 10.1016/j.scitotenv.2021.150212 [9] BAI X, MCKNIGHT MM, NEUFELD J D, et al. Nitrogen removal pathways during simultaneous nitrification, denitrification, and phosphorus removal under low temperature and dissolved oxygen conditions[J]. Bioresource Technology, 2022, 354: 127177. doi: 10.1016/j.biortech.2022.127177 [10] ZAMAN M, KIM M, NAKHLA G. Simultaneous nitrification-denitrifying phosphorus removal (SNDPR) at low DO for treating carbon-limited municipal wastewater[J]. Science of the Total Environment, 2021, 760: 143387. doi: 10.1016/j.scitotenv.2020.143387 [11] HU T, PENG Y, YUAN C, et al. Enhanced nutrient removal and facilitating granulation via intermittent aeration in simultaneous partial nitrification endogenous denitrification and phosphorus removal (SPNEDpr) process[J]. Chemosphere, 2021, 285: 131443. doi: 10.1016/j.chemosphere.2021.131443 [12] WANG X, WANG S, XUE T, al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200. doi: 10.1016/j.watres.2015.03.019 [13] WANG X, WANG S, ZHAO J, et al. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment[J]. Bioresource Technology, 2016, 220: 17-25. doi: 10.1016/j.biortech.2016.06.132 [14] 张郅昊, 张群, 孙郁聪, 等. 低温同步短程硝化反硝化可行性研究[J]. 工业水处理, 2022, 42(5): 83-88. [15] 陈明月, 刘丽红, 温榛煌, 等. 折流式A2O-MBR工艺启动过程及影响因素研究[J]. 水处理技术, 2023, 49(4): 120-124. [16] 刘钢, 温榛煌, 刘丽红, 等. A2O-MBR工艺短程硝化和SND影响因素研究[J]. 环境工程, 2023, 41: 88-91. [17] 张建华, 彭永臻, 张淼, 等. 同步硝化反硝化SBBR处理低C/N比生活污水的启动与稳定运行[J]. 化工学报, 2016, 67(11): 4817-4824. [18] ZHAO J, WANG X, LI X, et al. Combining partial nitrification and post endogenous denitrification in an EBPR system for deep-level nutrient removal from low carbon/nitrogen (C/N) domestic wastewater[J]. Chemosphere, 2018, 210: 19-28. doi: 10.1016/j.chemosphere.2018.06.135 [19] GAO X, ZHANG T, WANG B, et al. Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification[J]. Chemosphere, 2020, 252: 126624. doi: 10.1016/j.chemosphere.2020.126624 [20] WU Y, PENG Z, WANG H, et al. Hydraulic retention time optimization achieved unexpectedly high nitrogen removal rate in pilot-scale anaerobic/aerobic/anoxic system for low-strength municipal wastewater treatment[J]. Bioresource Technology, 2024, 393: 130128. doi: 10.1016/j.biortech.2023.130128 [21] GAO X, XUR X, LI L, et al. Balance nitrogen and phosphorus efficient removal under carbon limitation in pilot-scale demonstration of a novel anaerobic/aerobic/anoxic process[J]. Water Research, 2022, 223: 118991. doi: 10.1016/j.watres.2022.118991 [22] VIEIRA A, GALINHA CF, OEHMEN A, et al. The link between nitrous oxide emissions, microbial community profile and function from three full-scale WWTPs[J]. Science of the Total Environment, 2019, 651: 2460-2472. doi: 10.1016/j.scitotenv.2018.10.132 [23] 赵冰怡, 陈英文, 沈树宝. C/N比和曝气量影响MBR同步硝化反硝化的研究[J]. 环境工程学报, 2009, 3(3): 400-404. [24] WU T, YANG S-S, ZHONG L, et al. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future?[J] Science of the Total Environment, 2023, 856: 158977. [25] JIANG L, LIU Y, GUO F, et al. Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/ aerobic membrane bioreactor with limited aeration[J]. Bioresource Technology, 2021, 340: 125728. doi: 10.1016/j.biortech.2021.125728 [26] HE Q, YAN X, FU Z, et al. Rapid start-up and stable operation of an aerobic/oxic/anoxic simultaneous nitrification, denitrification, and phosphorus removal reactor with no sludge discharge[J]. Bioresource Technology, 2022, 362: 127777. doi: 10.1016/j.biortech.2022.127777 [27] ZHAO W, HUANG Y, WANG M, et al. Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/ anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater[J]. Chemical Engineering Journal, 2018, 339: 450-458. doi: 10.1016/j.cej.2018.01.096 [28] 张晓辉, 谢俊浩, 曹奇光, 等. 智慧污水处理自控系统设计及应用研究[J]. 中国电子科学研究院学报, 2021, 16(1): 27-31. [29] ZHENG Z, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148 [30] 孙盼, 张萌, 郭磊艳, 等. 短程反硝化生物过程及工艺研究进展[J]. 中国给水排水, 2023, 39(6): 9-17. [31] LI C, LIU S, MA T, et al. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature[J]. Chemosphere, 2019, 229: 132-141. doi: 10.1016/j.chemosphere.2019.04.185 [32] XIE S, ZHAO J, ZHANG Q, et al. Improvement of the performance of simultaneous nitrification denitrification and phosphorus removal(SNDPR)system by nitrite stress[J]. Science of the Total Environment, 2021, 788: 147825. doi: 10.1016/j.scitotenv.2021.147825 [33] BASSIN JP, KLEEREBEZEM R, DEZOTTI M, et al. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures[J]. Water Research, 2012, 46: 3805-3816. doi: 10.1016/j.watres.2012.04.015 [34] 冷璐, 信欣, 鲁航, 等. 同步硝化反硝化耦合除磷工艺的快速启动及其运行特征[J]. 环境科学, 2015, 35(11): 4180-4188. [35] 陈均利, 张树楠, 戴桂金, 等. 同步硝化反硝化菌(Alcaligenes faecalis WT14)养殖污水脱氮效果研究[J]. 农业环境科学学报, 2020, 39(8): 1811-1817. [36] GE S, PENG Y, LU C, et al. Practical consideration for design and optimization of the step feed process[J]. Frontiers of Environmental Science and Engineering in China, 2013, 7(1): 135-142. doi: 10.1007/s11783-012-0454-3 [37] 王朝朝, 李军, 高金华, 等. 进水碳氮比对UCT-MBR工艺运行效能及膜污染的影响[J]. 北京工业大学学报, 2014, 40(4): 619-626. [38] 茹凌宇, 刘恒毅, 李蕾, 等. 两级同步硝化反硝化工艺处理低碳氮比壤中流[J]. 中国给水排水, 2022, 38(21): 84-91. [39] WANG H, SONG Q, WANG J, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios[J]. Science of Total Environment, 2018, 642: 1145-1152. doi: 10.1016/j.scitotenv.2018.06.081 [40] MA J, JI Y, FU Z, et al. Performance of anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter: Effect of aeration time[J]. Bioresource Technology, 2023, 384: 129312. doi: 10.1016/j.biortech.2023.129312