-
镉(cadmium)是一种高毒性的重金属元素,即使在低质量浓度下也会对水体生态环境健康构成威胁。陈荣钦[1]对沘江上游的镉元素含量进行了检测,发现镉的最大含量高达0.03 mg·L−1,其中28件检查样品中含有超标的Cd和Pb。镉还会通过食物链进入人体,对肾脏、骨骼、呼吸系统和免疫系统产生有害影响[2-4]。镉在人体内的生物半衰期长达10~30 a,可蓄积50 a之久[5],因此寻求高效解决水体镉污染问题的技术方法迫在眉睫。目前常用的方法主要包括化学沉淀法、离子交换法、膜过滤、生物法和吸附法[6]。其中,吸附法因其高效、简单操作、且相对低成本等优点而广泛受到关注。
生物炭因其发达的孔隙结构、丰富的表面官能团和独特的表面电子供受能力,而具有良好的重金属吸附能力[7-9]。姜禹奇等[10]在500 ℃下利用玉米秸秆制备的生物炭,其镉去除率可达64.43%。戴亮等[11]制备的污泥生物炭对水中Cd2+的最大吸附容量为27.27 mg·g−1,而CHEN等[12]制备的莲子壳生物炭在300 ℃和600 ℃下对溶液中Cd2+的吸附量分别为31.69 mg·g−1和51.18 mg·g−1。纳米零价铁(nanoscale zero-valent iron,nZVI)是一种新型吸附材料。由于其高比表面积、优异的吸附和反应性,被广泛应用于镉的去除。黄园英等[13]的研究表明,当纳米铁颗粒的投加量为1g·L−1,Cd2+的初始质量浓度为74.51 mg·L−1时,在24 h内,镉的去除率可达98.62%。尽管纳米零价铁在环境修复中表现出卓越的效果,但在实际应用中仍存在一些不足之处。纳米零价铁颗粒容易发生团聚,导致活性位点减少[14-15]。因此,研究人员利用生物炭负载纳米零价铁的方法来提高其去除污染物的能力。许亚琼等[16]制备的nZVI改性生物炭(nZVI-BC)对Cd2+的饱和吸附量达125.5 mg·g−1,为原始生物炭的5.3倍。张磊[17]制备的KMnO4改性磁性生物炭(KMBC)对Cd2+的最大吸附量为53.9 mg·g−1。可以看出,改性后的生物炭对Cd2+的吸附量均有提升。
常规制备生物炭负载零价铁的方法分为2步,先制备生物炭,再将生物炭分散在铁离子溶液中,通过NaBH4还原法制备生物炭负载零价铁,操作流程较复杂,NaBH4价格较高且有毒,NaBH4的反应速率极快,容易导致团聚和不规则颗粒[18]。因此,该方法不是环保有效的方法。
碳热法一步制备生物炭负载零价铁具有一定的研究前景。碳热法以无机碳作为还原剂,在高温/惰性气体保护下将Fe2+/Fe3+还原成Fe0。戴亮等[11]发现,碳热法制备的铁碳材料比还原法制备的铁碳材料具有更好的稳定性和还原性。孙国帅[19]利用碳热法制备的纳米零价铁(NZVI)对Cd2+的最大吸附量为87.715 mg·g−1。然而,碳热法一步制备的生物炭负载零价铁对水溶液中Cd2+的吸附效能与机制尚不清楚。因此,本研究拟通过共热解树叶粉末和少量Fe3O4,采用简易的高温碳还原一步法合成生物炭负载零价铁材料(FeNPs@BC),考察了FeNPs@BC对Cd2+的吸附性能,并采用XRD、SEM、FTIR等表征方法分析了FeNPs@BC对Cd2+的吸附机理。
生物炭负载铁纳米颗粒对水溶液中镉的吸附性能
Adsorption performance of cadmium in aqueous solution using biochar-supported iron composites
-
摘要: 通过高温共热解落叶粉末与Fe3O4的混合物,同步实现了生物质炭化和三价铁的还原,一步制备了含有零价铁的生物炭负载纳米铁颗粒(FeNPs@BC)。批量吸附实验结果表明:当落叶生物质粉末与Fe3O4的比例为25:1时,制备的复合材料对镉的吸附效果最佳。吸附动力学符合准二级动力学模型,吸附等温线符合Langmuir模型。这证明FeNPs@BC主要以化学吸附为主,室温下最大平衡吸附量可达145.208 mg·g−1。FeNPs@BC对水中Cd2+的吸附能力优越,制备工艺简单,为生物炭基材料去除污水中Cd2+可提供理论基础和可替代的吸附材料。Abstract: In this study, biomass carbonization and reduction of trivalent iron simultaneously occurred when leaf powder was co-pyrolyzed with a small amount of Fe3O4 at high temperature, then the biochar-supported iron nanoparticles (FeNPs@BC) containing zero-valent iron were prepared by a one-step method. The results of batch adsorption experiments showed that the optimal performance on cadmium adsorption occurred when the ratio of a leaf biomass to Fe3O4 was 25:1. The adsorption kinetics followed a pseudo-second-order model, while the adsorption isotherms conformed to the Langmuir model, suggesting that the adsorption of Cd2+ onto FeNPs@BC primarily dominated by a chemical one. The maximum equilibrium adsorption capacity at room temperature could reach 145.208 mg·g−1. FeNPs@BC displayed a superior adsorption capacity to Cd2+ in water. The preparation process is simple, it can provide a theoretical basis and an alternative adsorbent material for Cd2+ removal from wastewater by using biochar-based materials.
-
Key words:
- biochar /
- zero-valent iron /
- Cd2+ /
- adsorption
-
表 1 吸附动力学模型参数
Table 1. The parameters of adsorption kinetic model
吸附剂 准一级动力学模型 准二级动力学模型 Qe /(mg·g−1) K1 /(g·(mg ·min)−1) R2 Qe /(mg·g−1) K1 /(g·(mg ·min)−1) R2 FeNPs@BC 155.781 0.001 4 0.967 153.642 0.0143 0.972 BC 71.608 0.000 7 0.984 72.593 0.006 0.981 Fe3O4 26.596 0.001 2 0.964 51.371 0.439 0.985 吸附剂 颗粒内扩散模型 Bangham diffusion模型 Elovich 模型 P R2 m Kb R2 α β R2 FeNPs@BC 14.643 0.964 3.581 28.594 0.967 23.218 0.038 0.953 BC 9.23 0.965 2.644 9.03 0.964 7.603 0.077 0.951 Fe3O4 3.231 0.913 6.412 6.796 0.95 4.803 0.37 0.955 表 2 Cd2+在 FeNPs@BC、BC 和 Fe3O4上等温吸附的拟合参数
Table 2. Fitting parameters of Cd2+ isotherm adsorption on FeNPs@BC, BC and Fe3O4
吸附剂 温度/℃ Langmuir模型 Freundlich模型 Temkin模型 Qm /(mg·g−1) KL /(L·mg−1) R2 Kf /(L·mg−1) 1/n R2 AT bT /(J·mol−1) R2 BC 25 96.985 0.129 0.983 32.251 0.175 0.96 3.699 194.26 0.975 35 91.482 0.044 0.999 33.762 0.155 0.934 3.508 116.58 0.958 45 99.711 0.143 0.971 40.23 0.131 0.944 4.106 189.16 0.959 Fe3O4 25 83.305 0.261 0.968 23.799 0.137 0.972 1.918 167.444 0.977 35 79.303 0.106 0.933 25.125 0.145 0.95 1.369 229.601 0.95 45 71.441 0.165 0.998 30.231 0.124 0.969 1.977 195.803 0.982 FeNPs@BC 25 145.208 0.182 0.967 54.282 0.136 0.954 1.565 858.704 0.966 35 158.193 0.201 0.992 60.574 0.131 0.973 2.272 959.448 0.984 45 173.29 0.192 0.986 64.467 0.126 0.989 2.523 942.428 0.988 -
[1] 陈荣钦. 沘江上游铅、镉元素迁移对沘江水体污染初探[J]. 云南地质, 1987(4): 332-338. [2] GODT J, SCHEIDIG F, GROSSE-SIETRUP C, et al. The toxicity of cadmium and resulting hazards for human health[J]. Occupational Medicine and Toxicology, 2006.1: 22. [3] MÉNDEZ-ARMENTA M, RÍOS C. Mini reviewcadmium neurotoxicity[J]. Environmental Toxicology and Pharmacology, 2007, 23: 350-358. [4] 崔玉静, 赵中秋, 刘文菊, 等 镉在土壤-植物-人体系统中迁移积累及其影响因子[J]. 生态学报, 2003(10): 2133-2143. [5] 李 婧, 周 艳, 陈 森, 等 我国土壤镉污染现状、危害及其治理方法综述[J]. 安徽农学学报 , 2015, 21(24): 104-107. [6] 张晓光. 我国当前污染水体修复方法研究[J]. 山西农经, 2020, 38(4): 93-95. [7] PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011: 439-451. [8] . 林雪原, 荆延德, 巩晨, 等 生物炭吸附重金属的研究进展[J]. 环境污染与防治, 2014, 36(5): 83-87. [9] 叶希青. 生物炭去除重金属离子及竞争吸附作用研究[D]. 武汉: 中国地质大学. 2020. [10] 姜禹奇, 都琳. 生物质炭修复重金属镉污染水体的研究[J]. 中国资源综合利用, 2021, 39(2): 201-204. [11] 戴亮, 任珺, 陶玲, 等. 不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性[J]. 环境工程学报, 2017, 11(7): 4029-4035. [12] CHEN Z, LIU T, TANG J, et al. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures[J]. Environmental Science and Pollution Research, 2018, 25(12): 11854-11866. doi: 10.1007/s11356-018-1460-1 [13] 黄园英, 王倩, 汤奇峰, 等. 纳米铁去除水体中镉的反应动力学、吸附平衡和影响因素[J]. 生态环境学报, 2019, 28(10): 2053-2061. [14] LIU A, LIU J, HAN J, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070 [15] 谢武明, 毕小林, 黄子峻, 等. 纳米活性氧化铝负载磁性纳米零价铁对不同重金属的吸附机理[J]. 环境科学学报, 2020, 40(8): 2732-2740. [16] 许亚琼, 王雪佳, 李荣华, 等. 纳米零价铁改性生物炭对污染土壤中Cd稳定化效果及作用机制研究[J]. 农业环境科学学报, 2022, 41(11): 2478-2487. [17] 张磊. 改性生物炭吸附溶液中镉离子的性能研究[D]. 郑州: 郑州大学, 2022. [18] 吴凡. 液相还原法制备微米级银粉及其性能研究[D]. 杭州: 浙江科技学院, 2022. [19] 孙国帅. 碳热法负载纳米零价铁对Cr(Ⅵ)和Cd(Ⅱ)的去除研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [20] JAVADIAN H, ANGAJI M T, NAUSHAD M. Synthesis and characterization of polyaniline/γ-alumina nanocomposite: A comparative study for the adsorption of three different anionic dyes[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(5): 3890-3900. [21] ANSARI R, KEIVANI M B, DELAVAR A F. Application of polyaniline nanolayer composite for removal of tartrazine dye from aqueous solutions[J]. Journal of Polymer Research, 2011, 18(6): 1931-1939. doi: 10.1007/s10965-011-9600-z [22] NETHAJI S, SIVASAMY A. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: Equilibrium and kinetic studies[J]. Chemosphere, 2011, 82(10): 1367-1372. doi: 10.1016/j.chemosphere.2010.11.080 [23] LI P G, WANG J X, LI X T, et al. Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal[J]. Journal of Hazardous Materials, 2019, 378: 120664. doi: 10.1016/j.jhazmat.2019.05.057 [24] WANG X Y, CAI J H, ZHANG Y J, et al. Heavy metal sorption properties of magnesium titanate mesoporous nanorods[J]. Journal of Materials Chemistry A, 2015, 3(22): 11796-11800. doi: 10.1039/C5TA02034D [25] XU Q H, WANG Y L, JIN L Q, et al. Adsorption of Cu (Ⅱ), Pb (Ⅱ) and Cr (Ⅵ) from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials, 2017, 339: 91-99. doi: 10.1016/j.jhazmat.2017.06.005 [26] CHEN X Y, HOSSAIN M F, DUAN C Y, et al. Isotherm models for adsorption of heavy metals from water : A review[J]. Chemosphere, 2022, 307: 135545. doi: 10.1016/j.chemosphere.2022.135545 [27] YAN Y Z, NAGAPP S, YOO J M, et al. Polyethyleneimine-grafted polysilsesquioxane hollow spheres for the highly efficient removal of anionic dyes and selective adsorption of Cr(VI)[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104814. doi: 10.1016/j.jece.2020.104814 [28] YU H, WANG J, YU J X, et al. Adsorption performance and stability of the modified straws and their extracts of cellulose, lignin, and hemicellulose for Pb2+: pH effect[J]. Arabian Journal of Chemistry, 2020, 13(12): 9019-9033. doi: 10.1016/j.arabjc.2020.10.024 [29] JIANG Q, JIANG S, LI H, et al. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine[J]. Chemical Engineering Journal, 2022, 431: 133937. doi: 10.1016/j.cej.2021.133937 [30] BOPARAI H K, JOSEPH M, O’CARRALL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011: 458-465. [31] 韩涛. 污泥生物炭负载纳米零价铁对水中Cd2+的吸附性能研究[D]. 兰州: 兰州交通大学, 2022. [32] 何恬叶. 稳定化纳米零价铁生物炭对水中重金属的吸附[D]. 成都: 成都理工大学, 2019. [33] KHAN Z H, GAO M, QIU W, et al. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution[J]. Chemosphere, 2020, 255: 126995. doi: 10.1016/j.chemosphere.2020.126995 [34] WU J, HUANG D, LIU X, et al. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials, 2018, 348: 10-19. doi: 10.1016/j.jhazmat.2018.01.011 [35] YANG D, WANG L, LI Z, et al. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J]. Science of the Total Environment, 2020: 134823. [36] HUANG F, ZHANG S M, WU R R, et al. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars[J]. Environmental Pollution, 2021: 116485. [37] TANG H X, STUMM W. The coagulating behaviors of Fe(III) polymeric species—I. preformed polymers by base addition[J]. Water Research, 1987, 21(1): 115-121. doi: 10.1016/0043-1354(87)90106-0 [38] YIN G, TAO L, CHEN X, et al. Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions[J]. Journal of Hazardous Materials, 2021: 126487. [39] 杨妍, 刘国涛, 余庆慧, 等. 多孔炭材料改性纳米零价铁的研究进展[J]. 化工进展, 2021, 40(S2): 198-202. [40] 江群. 玉米秸秆基生物炭及其负载nZVI去除水中阿特拉津研究[D]. 哈尔滨: 东北农业大学, 2020. [41] SHAO Y, TIAN C, YANG Y et al. Carbothermal synthesis of sludge iochar supported nanoscale zero-valent iron for the removal of Cd2+ and Cu2+: Preparation, performance, and safety risks[J]. International Journal of Environmental Research and Public Health, 2022: 16041. [42] CHEN L, LI F, WEI Y, et al. High cadmium adsorption on nanoscale zero-valent iron coated eichhornia crassipes biochar[J]. Environmental Chemistry Letters, 2019: 589-594.