[1] 陈荣钦. 沘江上游铅、镉元素迁移对沘江水体污染初探[J]. 云南地质, 1987(4): 332-338.
[2] GODT J, SCHEIDIG F, GROSSE-SIETRUP C, et al. The toxicity of cadmium and resulting hazards for human health[J]. Occupational Medicine and Toxicology, 2006.1: 22.
[3] MÉNDEZ-ARMENTA M, RÍOS C. Mini reviewcadmium neurotoxicity[J]. Environmental Toxicology and Pharmacology, 2007, 23: 350-358.
[4] 崔玉静, 赵中秋, 刘文菊, 等 镉在土壤-植物-人体系统中迁移积累及其影响因子[J]. 生态学报, 2003(10): 2133-2143.
[5] 李 婧, 周 艳, 陈 森, 等 我国土壤镉污染现状、危害及其治理方法综述[J]. 安徽农学学报 , 2015, 21(24): 104-107.
[6] 张晓光. 我国当前污染水体修复方法研究[J]. 山西农经, 2020, 38(4): 93-95.
[7] PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011: 439-451.
[8] . 林雪原, 荆延德, 巩晨, 等 生物炭吸附重金属的研究进展[J]. 环境污染与防治, 2014, 36(5): 83-87.
[9] 叶希青. 生物炭去除重金属离子及竞争吸附作用研究[D]. 武汉: 中国地质大学. 2020.
[10] 姜禹奇, 都琳. 生物质炭修复重金属镉污染水体的研究[J]. 中国资源综合利用, 2021, 39(2): 201-204.
[11] 戴亮, 任珺, 陶玲, 等. 不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性[J]. 环境工程学报, 2017, 11(7): 4029-4035.
[12] CHEN Z, LIU T, TANG J, et al. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures[J]. Environmental Science and Pollution Research, 2018, 25(12): 11854-11866. doi: 10.1007/s11356-018-1460-1
[13] 黄园英, 王倩, 汤奇峰, 等. 纳米铁去除水体中镉的反应动力学、吸附平衡和影响因素[J]. 生态环境学报, 2019, 28(10): 2053-2061.
[14] LIU A, LIU J, HAN J, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070
[15] 谢武明, 毕小林, 黄子峻, 等. 纳米活性氧化铝负载磁性纳米零价铁对不同重金属的吸附机理[J]. 环境科学学报, 2020, 40(8): 2732-2740.
[16] 许亚琼, 王雪佳, 李荣华, 等. 纳米零价铁改性生物炭对污染土壤中Cd稳定化效果及作用机制研究[J]. 农业环境科学学报, 2022, 41(11): 2478-2487.
[17] 张磊. 改性生物炭吸附溶液中镉离子的性能研究[D]. 郑州: 郑州大学, 2022.
[18] 吴凡. 液相还原法制备微米级银粉及其性能研究[D]. 杭州: 浙江科技学院, 2022.
[19] 孙国帅. 碳热法负载纳米零价铁对Cr(Ⅵ)和Cd(Ⅱ)的去除研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[20] JAVADIAN H, ANGAJI M T, NAUSHAD M. Synthesis and characterization of polyaniline/γ-alumina nanocomposite: A comparative study for the adsorption of three different anionic dyes[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(5): 3890-3900.
[21] ANSARI R, KEIVANI M B, DELAVAR A F. Application of polyaniline nanolayer composite for removal of tartrazine dye from aqueous solutions[J]. Journal of Polymer Research, 2011, 18(6): 1931-1939. doi: 10.1007/s10965-011-9600-z
[22] NETHAJI S, SIVASAMY A. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: Equilibrium and kinetic studies[J]. Chemosphere, 2011, 82(10): 1367-1372. doi: 10.1016/j.chemosphere.2010.11.080
[23] LI P G, WANG J X, LI X T, et al. Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal[J]. Journal of Hazardous Materials, 2019, 378: 120664. doi: 10.1016/j.jhazmat.2019.05.057
[24] WANG X Y, CAI J H, ZHANG Y J, et al. Heavy metal sorption properties of magnesium titanate mesoporous nanorods[J]. Journal of Materials Chemistry A, 2015, 3(22): 11796-11800. doi: 10.1039/C5TA02034D
[25] XU Q H, WANG Y L, JIN L Q, et al. Adsorption of Cu (Ⅱ), Pb (Ⅱ) and Cr (Ⅵ) from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials, 2017, 339: 91-99. doi: 10.1016/j.jhazmat.2017.06.005
[26] CHEN X Y, HOSSAIN M F, DUAN C Y, et al. Isotherm models for adsorption of heavy metals from water : A review[J]. Chemosphere, 2022, 307: 135545. doi: 10.1016/j.chemosphere.2022.135545
[27] YAN Y Z, NAGAPP S, YOO J M, et al. Polyethyleneimine-grafted polysilsesquioxane hollow spheres for the highly efficient removal of anionic dyes and selective adsorption of Cr(VI)[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104814. doi: 10.1016/j.jece.2020.104814
[28] YU H, WANG J, YU J X, et al. Adsorption performance and stability of the modified straws and their extracts of cellulose, lignin, and hemicellulose for Pb2+: pH effect[J]. Arabian Journal of Chemistry, 2020, 13(12): 9019-9033. doi: 10.1016/j.arabjc.2020.10.024
[29] JIANG Q, JIANG S, LI H, et al. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine[J]. Chemical Engineering Journal, 2022, 431: 133937. doi: 10.1016/j.cej.2021.133937
[30] BOPARAI H K, JOSEPH M, O’CARRALL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011: 458-465.
[31] 韩涛. 污泥生物炭负载纳米零价铁对水中Cd2+的吸附性能研究[D]. 兰州: 兰州交通大学, 2022.
[32] 何恬叶. 稳定化纳米零价铁生物炭对水中重金属的吸附[D]. 成都: 成都理工大学, 2019.
[33] KHAN Z H, GAO M, QIU W, et al. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution[J]. Chemosphere, 2020, 255: 126995. doi: 10.1016/j.chemosphere.2020.126995
[34] WU J, HUANG D, LIU X, et al. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials, 2018, 348: 10-19. doi: 10.1016/j.jhazmat.2018.01.011
[35] YANG D, WANG L, LI Z, et al. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J]. Science of the Total Environment, 2020: 134823.
[36] HUANG F, ZHANG S M, WU R R, et al. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars[J]. Environmental Pollution, 2021: 116485.
[37] TANG H X, STUMM W. The coagulating behaviors of Fe(III) polymeric species—I. preformed polymers by base addition[J]. Water Research, 1987, 21(1): 115-121. doi: 10.1016/0043-1354(87)90106-0
[38] YIN G, TAO L, CHEN X, et al. Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions[J]. Journal of Hazardous Materials, 2021: 126487.
[39] 杨妍, 刘国涛, 余庆慧, 等. 多孔炭材料改性纳米零价铁的研究进展[J]. 化工进展, 2021, 40(S2): 198-202.
[40] 江群. 玉米秸秆基生物炭及其负载nZVI去除水中阿特拉津研究[D]. 哈尔滨: 东北农业大学, 2020.
[41] SHAO Y, TIAN C, YANG Y et al. Carbothermal synthesis of sludge iochar supported nanoscale zero-valent iron for the removal of Cd2+ and Cu2+: Preparation, performance, and safety risks[J]. International Journal of Environmental Research and Public Health, 2022: 16041.
[42] CHEN L, LI F, WEI Y, et al. High cadmium adsorption on nanoscale zero-valent iron coated eichhornia crassipes biochar[J]. Environmental Chemistry Letters, 2019: 589-594.