[1] 李宁, 钟为章, 苗志加, 等. 两段进水生物膜法OOA-MBR工艺强化生物脱氮[J]. 环境工程学报, 2016, 10(9): 4849-4894.
[2] JIA Y, ZHOU M, CHEN Y, et al. Insight into short-cut of simultaneous nitrification and denitrification process in moving bed biofilm reactor: Effects of carbon to nitrogen ratio[J]. Chemical Engineering Journal, 2020, 400: 25905.
[3] IANNACONE F, CAPUA FD, GRANATA F, et al. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor[J]. Journal of Environmental Management, 2019, 250: 109518. doi: 10.1016/j.jenvman.2019.109518
[4] 王景峰, 王暄, 季民, 等. 颗粒污泥膜生物反应器同步硝化反硝化[J]. 中国环境科学, 2006, 26(4): 436-440.
[5] HE Q, ZHANG W, ZHANG S, et al. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326: 1223-1231. doi: 10.1016/j.cej.2017.06.071
[6] YUAN C, WANG B, PENG Y, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257: 127097. doi: 10.1016/j.chemosphere.2020.127097
[7] 闫苗苗, 张海涵, 钊珍芳, 等. 生物脱氮技术中好氧反硝化细菌的代谢及应用研究进展[J]. 环境科学研究, 2020, 33(3): 668-676.
[8] XI H, ZHOU X, ARSLAN M, et al. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment[J]. Science of the Total Environment, 2022, 805: 150212. doi: 10.1016/j.scitotenv.2021.150212
[9] BAI X, MCKNIGHT MM, NEUFELD J D, et al. Nitrogen removal pathways during simultaneous nitrification, denitrification, and phosphorus removal under low temperature and dissolved oxygen conditions[J]. Bioresource Technology, 2022, 354: 127177. doi: 10.1016/j.biortech.2022.127177
[10] ZAMAN M, KIM M, NAKHLA G. Simultaneous nitrification-denitrifying phosphorus removal (SNDPR) at low DO for treating carbon-limited municipal wastewater[J]. Science of the Total Environment, 2021, 760: 143387. doi: 10.1016/j.scitotenv.2020.143387
[11] HU T, PENG Y, YUAN C, et al. Enhanced nutrient removal and facilitating granulation via intermittent aeration in simultaneous partial nitrification endogenous denitrification and phosphorus removal (SPNEDpr) process[J]. Chemosphere, 2021, 285: 131443. doi: 10.1016/j.chemosphere.2021.131443
[12] WANG X, WANG S, XUE T, al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200. doi: 10.1016/j.watres.2015.03.019
[13] WANG X, WANG S, ZHAO J, et al. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment[J]. Bioresource Technology, 2016, 220: 17-25. doi: 10.1016/j.biortech.2016.06.132
[14] 张郅昊, 张群, 孙郁聪, 等. 低温同步短程硝化反硝化可行性研究[J]. 工业水处理, 2022, 42(5): 83-88.
[15] 陈明月, 刘丽红, 温榛煌, 等. 折流式A2O-MBR工艺启动过程及影响因素研究[J]. 水处理技术, 2023, 49(4): 120-124.
[16] 刘钢, 温榛煌, 刘丽红, 等. A2O-MBR工艺短程硝化和SND影响因素研究[J]. 环境工程, 2023, 41: 88-91.
[17] 张建华, 彭永臻, 张淼, 等. 同步硝化反硝化SBBR处理低C/N比生活污水的启动与稳定运行[J]. 化工学报, 2016, 67(11): 4817-4824.
[18] ZHAO J, WANG X, LI X, et al. Combining partial nitrification and post endogenous denitrification in an EBPR system for deep-level nutrient removal from low carbon/nitrogen (C/N) domestic wastewater[J]. Chemosphere, 2018, 210: 19-28. doi: 10.1016/j.chemosphere.2018.06.135
[19] GAO X, ZHANG T, WANG B, et al. Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification[J]. Chemosphere, 2020, 252: 126624. doi: 10.1016/j.chemosphere.2020.126624
[20] WU Y, PENG Z, WANG H, et al. Hydraulic retention time optimization achieved unexpectedly high nitrogen removal rate in pilot-scale anaerobic/aerobic/anoxic system for low-strength municipal wastewater treatment[J]. Bioresource Technology, 2024, 393: 130128. doi: 10.1016/j.biortech.2023.130128
[21] GAO X, XUR X, LI L, et al. Balance nitrogen and phosphorus efficient removal under carbon limitation in pilot-scale demonstration of a novel anaerobic/aerobic/anoxic process[J]. Water Research, 2022, 223: 118991. doi: 10.1016/j.watres.2022.118991
[22] VIEIRA A, GALINHA CF, OEHMEN A, et al. The link between nitrous oxide emissions, microbial community profile and function from three full-scale WWTPs[J]. Science of the Total Environment, 2019, 651: 2460-2472. doi: 10.1016/j.scitotenv.2018.10.132
[23] 赵冰怡, 陈英文, 沈树宝. C/N比和曝气量影响MBR同步硝化反硝化的研究[J]. 环境工程学报, 2009, 3(3): 400-404.
[24] WU T, YANG S-S, ZHONG L, et al. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future?[J] Science of the Total Environment, 2023, 856: 158977.
[25] JIANG L, LIU Y, GUO F, et al. Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/ aerobic membrane bioreactor with limited aeration[J]. Bioresource Technology, 2021, 340: 125728. doi: 10.1016/j.biortech.2021.125728
[26] HE Q, YAN X, FU Z, et al. Rapid start-up and stable operation of an aerobic/oxic/anoxic simultaneous nitrification, denitrification, and phosphorus removal reactor with no sludge discharge[J]. Bioresource Technology, 2022, 362: 127777. doi: 10.1016/j.biortech.2022.127777
[27] ZHAO W, HUANG Y, WANG M, et al. Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/ anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater[J]. Chemical Engineering Journal, 2018, 339: 450-458. doi: 10.1016/j.cej.2018.01.096
[28] 张晓辉, 谢俊浩, 曹奇光, 等. 智慧污水处理自控系统设计及应用研究[J]. 中国电子科学研究院学报, 2021, 16(1): 27-31.
[29] ZHENG Z, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148
[30] 孙盼, 张萌, 郭磊艳, 等. 短程反硝化生物过程及工艺研究进展[J]. 中国给水排水, 2023, 39(6): 9-17.
[31] LI C, LIU S, MA T, et al. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature[J]. Chemosphere, 2019, 229: 132-141. doi: 10.1016/j.chemosphere.2019.04.185
[32] XIE S, ZHAO J, ZHANG Q, et al. Improvement of the performance of simultaneous nitrification denitrification and phosphorus removal(SNDPR)system by nitrite stress[J]. Science of the Total Environment, 2021, 788: 147825. doi: 10.1016/j.scitotenv.2021.147825
[33] BASSIN JP, KLEEREBEZEM R, DEZOTTI M, et al. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures[J]. Water Research, 2012, 46: 3805-3816. doi: 10.1016/j.watres.2012.04.015
[34] 冷璐, 信欣, 鲁航, 等. 同步硝化反硝化耦合除磷工艺的快速启动及其运行特征[J]. 环境科学, 2015, 35(11): 4180-4188.
[35] 陈均利, 张树楠, 戴桂金, 等. 同步硝化反硝化菌(Alcaligenes faecalis WT14)养殖污水脱氮效果研究[J]. 农业环境科学学报, 2020, 39(8): 1811-1817.
[36] GE S, PENG Y, LU C, et al. Practical consideration for design and optimization of the step feed process[J]. Frontiers of Environmental Science and Engineering in China, 2013, 7(1): 135-142. doi: 10.1007/s11783-012-0454-3
[37] 王朝朝, 李军, 高金华, 等. 进水碳氮比对UCT-MBR工艺运行效能及膜污染的影响[J]. 北京工业大学学报, 2014, 40(4): 619-626.
[38] 茹凌宇, 刘恒毅, 李蕾, 等. 两级同步硝化反硝化工艺处理低碳氮比壤中流[J]. 中国给水排水, 2022, 38(21): 84-91.
[39] WANG H, SONG Q, WANG J, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios[J]. Science of Total Environment, 2018, 642: 1145-1152. doi: 10.1016/j.scitotenv.2018.06.081
[40] MA J, JI Y, FU Z, et al. Performance of anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter: Effect of aeration time[J]. Bioresource Technology, 2023, 384: 129312. doi: 10.1016/j.biortech.2023.129312