-
中国已成为最大的电解锰生产国,占世界电解锰生产能力和产量的98%以上[1]。目前,几乎大部分的电解锰渣都未经任何处理就被倾倒在填埋场,其主要污染物氨氮(NH4+-N)、可溶性锰(Mn2+)和重金属等会随着雨水的浸出、淋溶渗漏到周围的环境中,造成严重的土壤和水体污染[2-3],由电解锰渣引起的环境问题已引起社会的广泛关注。电解碳酸锰渣(electrolytic manganese carbonate residue,EMCR)是将菱锰矿中的固体碳酸锰转化为可溶性锰时排放的一种固体废弃物[4]。电解二氧化锰(electrolytic manganese dioxide,EMD)是现代碱性、锂和钠电池(包括电化学电容器和制氢)中阴极材料的关键成分,随着电池行业的快速发展,EMD的产能每年已达465 900 t,我国的产量约占64.02% [5]。而电解二氧化锰渣(electrolytic manganese dioxide residue,EMDR)是电解二氧化锰工业生产过程中产生的固体废物[6]。
目前,电解锰渣的综合利用主要集中于锰的回收、制备铺路砖体等建筑材料、用作土壤肥料等。如CHANG等[7]通过优化锰的微波浸出工艺,在温度76 ℃、时间55 min、H2SO4浓度为0.76 mol·L−1、柠檬酸的用量为3.51 mg·g−1的条件下微波辅助浸出锰。SHU等[8]开发了一种通过电还原从电解金属锰渣中浸出锰的改进工艺,电场可以改变电解金属锰渣粒子的表面电荷分布,还原高价锰。ZHANG等[9]将电解锰渣与赤泥(RM)和其他固体废物协同用作道路基层材料(RBM)。WANG等[10]根据电解锰渣的特点(即高石膏含量),开发了一种新型的电解金属锰渣活化胶凝材料(EGCH)。以上在工程实践中应用时易受到不可控的利用效率和潜在的再浸出环境风险的限制。而煅烧作为环保的无害化处理方式之一已广泛应用于固体废弃物的处理处置中[11–13]。电解锰渣的煅烧处理与其他方式相比有很多优点,在煅烧过程中电解锰渣中的有害物质会被去除,产生的气体可被回收制备硫酸,且电解锰渣含有大量的SiO2、AI2O3、Fe2O3等物质,经一定温度煅烧处理后可激发它们的潜在活性[14–16],后续可进行高效资源化利用。
但目前对于电解锰渣高温煅烧利用处置过程中污染物的形态分析研究较少。本研究对2种不同工艺产生的EMCR和EMDR在氮气气氛下经不同温度煅烧后残渣的矿物组成及微观组织形貌进行了分析,对排放烟气中N元素各化合态形式进行研究,并通过改进BCR连续提取法探究煅烧过程中两种电解锰渣残渣中Mn元素的形态变化特征,并通过风险评估代码(RAC)对样品中Mn元素进行环境风险评估。对电解锰渣煅烧处置过程开展性质分析,可清晰直观地掌握各温度段电解锰渣中污染物的存在形态,同时还将为2种电解锰渣经煅烧处置后的资源化再利用工作提供有效的数据支撑。
电解锰渣煅烧时Mn、N元素形态分布与微观结构变化
Morphological distribution of Mn and N elements and changes in microstructure in electrolytic manganese residue during the calcination
-
摘要: 电解锰行业的发展会产生大量的电解锰渣,易导致严重的环境污染,高温煅烧已成为当前无害化处理电解锰渣的高效方法之一。为探究高温煅烧时电解锰渣中特征污染物的化学形态及物相组成,选取广西某电解锰企业经不同工艺产生的电解碳酸锰渣(EMCR)与电解二氧化锰渣(EMDR),通过其理化特性及Mn、N元素形态分布与微观结构变化分析,研究了不同温度煅烧处理对电解锰渣污染物的影响。结果表明,电解二氧化锰渣中Mn元素的可氧化态与可还原态分布均大于电解碳酸锰渣。当煅烧温度在1 000 ℃以上时,2种电解锰渣中Mn元素基本上以残渣态的形式存在,通过风险评估代码(RAC)结果可知样品处于低风险甚至无风险状态,可进行后续的处理处置。2种电解锰渣中N元素的形态随着温度的升高主要以NO形式为主。通过对煅烧过程中微观结构的变化分析可知,在800 ℃时电解碳酸锰渣中石英相(SiO2)的衍射峰强度最佳,有利于活性发展,此时的能谱分析结果显示Fe元素占比达到了52.40%,有利于Fe的回收利用,而电解二氧化锰渣的最佳煅烧处理温度显示为1 000 ℃。该研究结果可为2种电解锰渣经煅烧处置后的资源化再利用工作提供有效的数据支撑。Abstract: The development of the electrolytic manganese industry will generate a large amount of electrolytic manganese residue, which is prone to serious environmental pollution. High temperature calcination has become one of the efficient methods for harmless treatment of electrolytic manganese residue. To explore the chemical forms and phase composition of characteristic pollutants in electrolytic manganese residue during high-temperature calcination, electrolytic manganese carbonate residue(EMCR) and electrolytic manganese dioxide residue(EMDR) produced by a household appliance manganese removal enterprise in Guangxi through different processes were selected. The influence of calcination at different temperatures on the pollutants in electrolytic manganese residue was studied by analyzing its physicochemical propertie, including the morphological distribution of Mn and N elements, and the changes in microstructure. The results showed that the distribution of oxidizable and reducible states of Mn element in electrolytic manganese dioxide residue was greater than that in electrolytic manganese carbonate residue. When the calcination temperature was above 1 000 ℃, the Mn element in the two types of electrolytic manganese slag basically existed in the form of residue. The risk assessment code (RAC) results indicated that the sample was in a low-risk or even risk-free state, and can be subjected to subsequent treatment and disposal. The form of N element in the two types of electrolytic manganese residue was mainly in the form of NO with the increase of temperature. Through the analysis of the microstructure changes during the calcination process, it can be concluded that the diffraction peak intensity of quartz phase (SiO2) in electrolytic manganese carbonate residue was the best at 800 ℃, which was conducive to the development of activity. At this time, the energy spectrum analysis results showed that the proportion of Fe element reaches 52.40%, which was conducive to the recovery and utilization of Fe. The optimal calcination temperature for electrolytic manganese dioxide residue was shown to be 1 000 ℃. The research results will provide effective data support for the resource reuse of two types of electrolytic manganese slag after calcination treatment.
-
表 1 电解碳酸锰渣与电解二氧化锰渣的化学成分组成
Table 1. The chemical compositions of Electrolytic manganese carbonate residue and Electrolytic manganese dioxide residue
% 样品种类 SO3 SiO2 CaO Fe2O3 Al2O3 MnO 电解碳酸锰渣 22.99 22.85 18.94 14.07 2.43 7.93 电解二氧化锰渣 34.58 18.96 14.96 7.80 9.46 4.66 表 2 BCR连续提取方案
Table 2. BCR sequential extraction scheme
提取步骤
(金属形态)试剂 目标阶段 F1:可交换态 醋酸(0.11 mol·L−1) 酸溶性 F2:可还原态 盐酸羟胺(0.50 mol·L−1) 铁、锰氧化物 F3:可氧化态 过氧化氢→醋酸铵(1.00 mol·L−1) 有机物、化合物 F4:残渣态 硝酸+氢氟酸+过氧化氢 残余物质 表 3 风险评估代码(RAC)等级分类
Table 3. Risk Assessment Code (RAC) Level Classification
RAC 等级 风险等级 <1 1 无风险 1~10 2 低风险 10~30 3 中风险 30~50 4 高风险 50~100 5 超高风险 -
[1] XU F, JIANG L, DAN Z, et al. Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China — A case study[J]. Hydrometallurgy, 2014, 149: 12-22. doi: 10.1016/j.hydromet.2014.05.002 [2] YANG T, XUE Y, LIU X, et al. Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review[J]. Process Safety and Environmental Protection, 2022, 157: 509-526. doi: 10.1016/j.psep.2021.10.031 [3] HE D, SHU J, WANG R, et al. A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse[J]. Journal of Hazardous Materials, 2021, 418: 126235. doi: 10.1016/j.jhazmat.2021.126235 [4] DU B, ZHOU C, LI X, et al. A kinetic study of Mn(II) precipitation of leached aqueous solution from electrolytic manganese residues[J]. Toxicological & Environmental Chemistry, 2015, 97(3-4): 349-357. [5] BISWAL A, CHANDRA TRIPATHY B, SANJAY K, et al. Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry[J]. RSC Advances, 2015, 5(72): 58255-58283. doi: 10.1039/C5RA05892A [6] ZHANG W, CHU Y C. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide[J]. Hydrometallurgy, 2007, 89(3-4): 137-159. doi: 10.1016/j.hydromet.2007.08.010 [7] CHANG J, SRINIVASAKANNAN C, SUN X, et al. Optimization of microwave-assisted manganese leaching from electrolyte manganese residue[J]. Green Processing and Synthesis, 2019, 9(1): 2-12. doi: 10.1515/gps-2020-0001 [8] SHU J, LIU R, LIU Z, et al. Leaching of manganese from electrolytic manganese residue by electro-reduction[J]. Environmental Technology, 2017, 38(16): 2077-2084. doi: 10.1080/09593330.2016.1245789 [9] ZHANG Y, LIU X, XU Y, et al. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue[J]. Journal of Cleaner Production, 2019, 232: 980-992. doi: 10.1016/j.jclepro.2019.05.352 [10] WANG D, WANG Q, XUE J. Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel application as a cementitious material[J]. Resources, Conservation and Recycling, 2020, 154: 104645. doi: 10.1016/j.resconrec.2019.104645 [11] GUO Z, XU J, XU Z, et al. Performance of cement-based materials containing calcined coal gangue with different calcination regimes[J]. Journal of Building Engineering, 2022, 56: 104821. doi: 10.1016/j.jobe.2022.104821 [12] REN C, WANG W, HUA D, et al. Preparation and Properties of a Sulphoaluminate Magnesium-Potassium Phosphate Green Cementitious Composite Material from Industrial Solid Wastes[J]. Materials, 2021, 14(23): 7340. doi: 10.3390/ma14237340 [13] WU W, CHEN Z, HUANG Y, et al. Red mud for the efficient adsorption of U(VI) from aqueous solution: Influence of calcination on performance and mechanism[J]. Journal of Hazardous Materials, 2021, 409: 124925. doi: 10.1016/j.jhazmat.2020.124925 [14] LIU X ming, LI Y, ZHANG L ling, et al. Phase transitions relating to the pozzolanic activity of electrolytic manganese residue during calcination[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(1): 105-110. doi: 10.1007/s12204-013-1372-7 [15] WANG F, LONG G, BAI M, et al. Application of electrolytic manganese residues in cement products through pozzolanic activity motivation and calcination[J]. Journal of Cleaner Production, 2022, 338: 130629. doi: 10.1016/j.jclepro.2022.130629 [16] HOU P kun, QIAN J shi, WANG Z, et al. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue[J]. Cement and Concrete Composites, 2012, 34(2): 248-254. doi: 10.1016/j.cemconcomp.2011.10.003 [17] TOKALIOĞLU Ş, KARTAL Ş. Bioavailability of Soil‐Extractable Metals to Tea Plant by BCR Sequential Extraction Procedure[J]. Instrumentation Science & Technology, 2004, 32(4): 387-400. [18] NEMATI K, BAKAR N K A, ABAS Mhd R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011: S0304389411006789. [19] JAMALI M K, KAZI T G, AFRIDI H I, et al. Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J]. Environmental Letters, 2007, 42(5): 649-659. [20] TOKALIOLU E, KARTAL E, ELI L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure[J]. Analytica Chimica Acta, 2000, 413(1-2): 33-40. doi: 10.1016/S0003-2670(00)00726-1 [21] 聂霄悍, 雷学文, 刘磊, 等. 堆存陈化对电解锰渣重金属赋存形态及环境风险演化的影响[J/OL]. 中国环境科学.https://doi.org/10.19674/j.cnki.issn1000-6923.20230823.007. [22] 姜媛媛, 王彦, 段文焱, 等. 市政污泥热解过程中重金属迁移特性及环境效应评估[J]. 环境科学, 2021, 42(6): 2966-2974. doi: 10.13227/j.hjkx.202009078 [23] 中华人民共和国环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010. [24] CHEN M, WEI J, ZHANG R, et al. Analysis of basic physical and chemical characteristics of manganese slag before and after solidification and its feasibility as highway slope[J]. Materials, 2021, 14(19): 5530. doi: 10.3390/ma14195530 [25] KOLAITIS D I, FOUNTI M A. Development of a solid reaction kinetics gypsum dehydration model appropriate for CFD simulation of gypsum plasterboard wall assemblies exposed to fire[J]. Fire Safety Journal, 2013, 58: 151-159. doi: 10.1016/j.firesaf.2013.01.029 [26] HAN Y, CUI X, LV X, et al. Preparation and characterization of geopolymers based on a phosphoric-acid-activated electrolytic manganese dioxide residue[J]. Journal of Cleaner Production, 2018, 205: 488-498. doi: 10.1016/j.jclepro.2018.09.141 [27] ZHAN X, WANG L, WANG L, et al. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment[J]. Waste Management, 2019, 98: 135-143. doi: 10.1016/j.wasman.2019.08.024 [28] DUAN N, CUI K, ZHU C, et al. Study on phase evolution and promoting the pozzolanic activity of electrolytic manganese residue during calcination[J]. Environmental Research, 2023, 227: 115774. doi: 10.1016/j.envres.2023.115774 [29] SHU J, LIU R, LIU Z, et al. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of Hazardous Materials, 2016, 317: 267-274. doi: 10.1016/j.jhazmat.2016.05.076 [30] SHU J, LI B, CHEN M, et al. An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material[J]. Chemosphere, 2020, 253: 126896. doi: 10.1016/j.chemosphere.2020.126896 [31] XU L J, WANG X M, CHEN H C, et al. Mn forms and environmental impact of electrolytic manganese residue[J]. Advanced Materials Research, 2011, 183-185: 570-574. doi: 10.4028/www.scientific.net/AMR.183-185.570