预分选汽车破碎残余物热解特性及其动力学分析

谭金鹏, 李伟锋, 陈雪莉. 预分选汽车破碎残余物热解特性及其动力学分析[J]. 环境工程学报, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046
引用本文: 谭金鹏, 李伟锋, 陈雪莉. 预分选汽车破碎残余物热解特性及其动力学分析[J]. 环境工程学报, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046
TAN Jinpeng, LI Weifeng, CHEN Xueli. Pyrolysis characteristics and dynamic analysis of pre-separated automobile shredder residues[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046
Citation: TAN Jinpeng, LI Weifeng, CHEN Xueli. Pyrolysis characteristics and dynamic analysis of pre-separated automobile shredder residues[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046

预分选汽车破碎残余物热解特性及其动力学分析

    作者简介: 谭金鹏 (1997—) ,男,硕士研究生,jp_tan97@163.com
    通讯作者: 李伟锋 (1976—) ,男,博士,教授,liweif@ecust.edu.cn
  • 基金项目:
    国家自然科学基金面上资助项目 (22278133) ;国家自然科学基金联合基金重点资助项目 (U21B2088)
  • 中图分类号: X705

Pyrolysis characteristics and dynamic analysis of pre-separated automobile shredder residues

    Corresponding author: LI Weifeng, liweif@ecust.edu.cn
  • 摘要: 我国每年产生的汽车破碎残余物 (automobile shredder residue,ASR) 数量巨大,亟需无害化处理和资源化利用。固废热解过程因产生的二次污染物少,且产品利用价值高,逐渐成为研究的热点。针对某报废汽车生产线产生的5种典型预分选ASR物料,在固定床反应器中考察了温度 (500~900 ℃) 和物料种类对ASR热解三相产物组成、热解焦微观结构及重金属分布规律的影响,通过热重 (TG) 分析ASR从常温到900 ℃热失重过程,并采用分布式活化能 (DAEM) 法计算其热解动力学。结果表明,ASR热解主要发生于200~500 ℃范围内,热解反应活化能为17.39~195.21 kJ·mol−1。提高热解温度,ASR样品可产生更多热解气,且H2、CO和CH4等成分占比增加,焦油产生量减少,同时促进焦油二次裂解以及组分向苯环化转化。红外和拉曼光谱分析表明,热解温度升高,热解焦中主要发生-OH、-CH3、-C=C-以及-COOH等分子基团的脱除,不同ASR热解焦ID1/IG值在3.77~6.57内,石墨化程度增大,热解焦中重金属分布受温度和物料种类影响显著。本研究结果可为开发ASR热解技术提供参考。
  • 氯苯(chlorobenzene,CB)是最简单的氯芳烃,自19世纪合成以来,即大量用于生产DDT,至今,氯苯依然是年产量超过100万磅的高产量化学品[1]. 环境中的氯苯大多来源于人类的工业活动,据报道,美国氯苯类化合物的环境排放量可达到每年980吨[2]. 氯苯在自然界中的降解速度较慢,具有很强的生物积累性和生物毒性,有研究显示氯苯除了对中枢神经系统和呼吸系统有影响之外,还可造成肾脏和肝脏的损伤[3].

    目前已经有很多研究者关注到氯苯的无害化处理问题,传统的氯苯处理方法主要包括吸附法、生物降解法和化学氧化法. 这些方法大多具有二次污染、效率低、选择性差等特点. 基于单过硫酸盐化合物(PMS)的高级氧化技术因其高氧化效率在降解氯代有机污染物的过程中表现出了优异的性能. 许多研究结果表明,钴氧化物(CoO、CoO2、Co2O3、CoO(OH)、Co3O4)具有活化PMS的良好能力,但单钴氧化物的比表面积非常低,以团聚,导致活性位有限,显著抑制其催化活性[4]. 有研究表明通过将钴氧化物分散在多孔材料的孔道中,可以将活性金属限域在特定孔结构中,从而使活性金属实现高度分散,这种方法可以极大提高钴基材料的催化活性[5]. SBA-15具有较高的比表面积、稳定的结构和有序的孔径,是一种良好的催化剂载体. 由于金属盐与模板剂之间的强相互作用,通过固相研磨法将金属盐与未去除模板的SBA-15充分混合之后,经过焙烧可以得到高金属分散度的催化剂. 因此,在本研究中,采用固相研磨法合成催化剂CoOx@SBA-15,并对其活化PMS降解氯苯的性能进行测试,并进一步探究反应中的各种因素对反应活性的影响机制及反应体系的主要活性物种.

    试剂:P123(Sigma-Aldrich,99%),正硅酸四乙酯(国药,AR),六水合硝酸钴(阿拉丁,99%),氯苯(麦克林,AR),单过硫酸盐化合物(Sigma-Aldrich,99.9%),2,2,6,6-四甲基哌啶(Sigma-Aldrich,AR),5,5-二甲基-1-吡咯啉-N-氧化物(百灵威,AR),甲醇(TEDIA,HPLC),盐酸(国药,AR),实验中所用水均为去离子水.

    以SBA-15为载体利用固相研磨法制备限域型CoOx@SBA-15[6]:按文献报道方法,以正硅酸四乙酯(TEOS)为硅源,三嵌段共聚化合物P123为模板剂合成介孔氧化硅SBA-15[7];在室温条件下将一定量的Co(NO32·6H2O与1 g未去除模板剂的SBA-15在研钵中混合并研磨1 h得到CoOx@SBA-15;将所得的混合物置于马弗炉中,以2 °C·min−1 的升温速率升温至500 °C,并保持5 h,焙烧所得产物标记为CoOxX)@SBA-15,其中X是钴的负载量(以质量分数计).

    采用传统浸渍法制备CoOx/SBA-15和CoOx/SiO2催化剂. 首先将SBA-15置于马弗炉中焙烧,以1 °C·min−1的升温速率升温到550 °C,并保持6 h,目的是碳化并去除SBA-15中的模板剂;将购得的SiO2置于马弗炉中焙烧,以2 °C·min−1的升温速率升温到300 °C,并保持4 h,目的是去除其中可能存在的杂质;随后将一定量的Co(NO32溶液与1 g载体在室温条件下混合搅拌2 h以上,并在90 °C水浴中蒸干,在100 °C烘箱中干燥过夜,干燥后所得材料标记为CoOxX)/Y,其中X是负载量(以质量分数计),Y是载体.

    催化剂透射电镜分析(TEM)在日本JEOL公司,JEM-200CX型透射电子显微镜上检测;X射线衍射分析(XRD):采用日本Rigaku公司D/max-rA型X射线衍射仪,Cu 靶(Kα1,λ=0.154056 nm,扫描速度6(°)· min−1),操作条件:40 kV、30 mA,扫描范围:10°—80°;催化剂中Co含量采用原子吸收光谱(AAS,美国Thermo公司)测定;催化剂比表面积、孔径孔容采用比表面积测定仪(ASAP 2020,美国Micromeritics公司)分析;催化剂的在不同温度的还原状态采用泛泰公司生产的Finesorb-3010程序升温化学吸附仪进行测定.

    氯苯的降解实验在250 mL三口烧瓶中进行,温度保持在(25±0.5)℃,具体操作方法如下:储备液用去离子水稀释至反应所需浓度,三口烧瓶中溶液总体积为200 mL,随后将一定量的催化剂(5—40 mg)分散在溶液中,搅拌1 h以达到吸附平衡并保证催化剂充分分散. 加入一定量的PMS储备液开始反应,在反应开始后的固定时间(1、3、5、10、20、30、50、70、90、120 min)取出反应溶液,并通过0.22 μm PTFE过滤器(Anpel)进行过滤. 将过滤后的1 mL反应溶液转移到装有0.5 mL甲醇的2 mL棕色液相小瓶中以清除残留的自由基.

    使用配备有C-18色谱柱(ZORBAX Eclipse XDB-C18)的高效液相色谱仪(HPLC,1220 Infinity II)检测滤液中的氯苯. 仪器条件:流动相包括纯水和甲醇(30/70,V/V),流速为0.8 mL·min−1. 紫外检测波长为223 nm,柱温30 ℃.

    催化剂活化PMS产生的自由基采用德国Bruker BioSpin有限公司生产的顺磁共振波谱仪(Electron Paramagnetic Resonance Spectrometer,EMX PLUS(PPMS))检测. 具体方法如下:称取适量催化剂分散在去离子水中,涡旋振荡30 s确保催化剂充分分散,取一定量PMS溶液加入到催化剂的溶液中,并使其充分混匀;在2.5 mL尖头离心管中加入1 mL所得混合溶液和100 µL 1 mol·L−1的自由基捕获剂(5,5-二甲基吡咯啉氧化物(DMPO)或2,2,6,6-四甲基-4-哌啶(TEMP))储备液,自由基捕获剂需溶解在pH = 7.4的磷酸缓冲液中,涡旋振荡30 s;将混合后的溶液转移至EPR样品管中,进行EPR分析. EPR操作参数:中心场为348.0 mT,扫描宽度为20 mT,微波频率为9.77 GHz,调制频率为100 GHz,能量为20 mW.

    图1(a)是焙烧去除模板后的SBA-15、固相研磨法合成的催化剂CoOx@SBA-15以及浸渍法合成的催化剂CoOx/SBA-15的小角XRD图谱,小角XRD图谱可以用于分析材料的孔结构的有序度. 从图1(a)中可以看出,去除模板后的SBA-15在2θ为0.75°到2°范围内有3个明显的特征衍射峰,分别位于0.88°、1.52°和1.76°,对应于于SBA-15的(100)、(110)和(200)衍射面,该结果表明合成的SBA-15具有高度的二维六方介孔结构和p6mm对称性[7]. 此外,催化剂CoOx@SBA-15和CoOx/SBA-15的图谱中也呈现着3个明显的特征衍射峰,这表明在500 ℃焙烧后载体SBA-15的介孔结构并没有被破坏.

    图 1  催化剂的(a)SAXRS谱图和(b)WAXRD谱图
    Figure 1.  (a) SAXRS patterns and (b) WAXRD patterns of catalysts

    催化剂的广角XRD图谱如图1(b)所示. 从图1可以看出,浸渍法合成的CoOx/SiO2催化剂在2θ 为36.56°、55.3°、59.96°处均有明显的特征衍射峰,此处衍射峰可归属于尖晶石Co3O4的(311)、(422)、(511)晶面,这表明焙烧过程中Co(NO32在载体SiO2形成了较大的Co3O4微晶,这是因为金属和载体之间的相互作用较弱[8]. 此外在该材料的XRD图谱上还可以观察到CoO(2θ = 42.9°)和金属Co(2θ = 44.2°)的特征衍射峰,这是因为在焙烧过程中产生的微量C、N会还原部分Co3O4. 从CoOx@SBA-15和CoOx/SBA-15的广角XRD图谱中可以看出,2种材料与载体SBA-15一样均在2θ = 22°附近有一处较宽的衍射峰,可归属于无定型SiO2的特征峰[9]. 其中催化剂CoOx/SBA-15可以观察到一处微弱的CoO(2θ = 42.9°)特征衍射峰,表明位于SBA-15上的Co(NO32焙烧时部分形成了CoO分散在SBA-15表面或孔道中,而在CoOx@SBA-15中未观察到明显的衍射峰,这表明金属在CoOx@SBA-15中高度分散.

    去模板后的载体SBA-15以及催化剂CoOx@SBA-15和CoOx/SBA-15的N2吸附-脱附等温线和孔径分布如图2所示,各材料的结构参数汇总在表1. 从图2(a)中可以看出,SBA-15的N2吸附-脱附等温线在P/P0 0.64—0.85之间出现了明显的H1型回滞环,且曲线为典型的IV型等温线,验证了实验中合成的SBA-15具有有序的介孔结构[10]. CoOx@SBA-15和CoOx/SBA-15的等温线形状与SBA-15类似,分别在P/P0 0.50—0.85和0.49—0.82之间存在H1型回滞环这说明经过焙烧后的催化剂依旧具有和SBA-15一样的有序介孔结构. 但材料的氮气吸附量呈现出CoOx@SBA-15 < CoOx/SBA-15 < SBA-15的趋势这是由于固相研磨法合成的催化剂中金属会在焙烧过程中更多地被限域在SBA-15的孔道中,从而影响材料的吸附量. 除此之外,如图2(b)所示,催化剂CoOx@SBA-15和CoOx/SBA-15和载体SBA-15的孔径均集中分布在4—10 nm之间,最可几孔径分别为6.38 nm、6.33 nm和6.49 nm,这表明金属的负载并不会影响SBA-15的中孔结构. 除此之外,从表1中可以看出,CoOx@SBA-15和CoOx/SBA-15的孔容分别为0.68 cm3·g-1和0.82 cm3·g−1,相较于SBA-15的孔容1.10 cm3·g−1有很大降低,孔径和孔容结果也进一步验证了催化剂CoOx@SBA-15上SBA-15对钴氧化物的限域作用.

    图 2  (a)催化剂的N2吸附-脱附等温线及(b)孔径分布
    Figure 2.  (a) N2 adsorption-desorption curves and (b) pore size distributions of samples
    表 1  SBA-15及钴基催化剂的结构参数
    Table 1.  Structural parameters of SBA-15 and Cobalt-based catalyst
    样品 SampleSBETa/(m2·g−1Smicrob/(m2·g−1Vtc/(cm3·g−1Vmicrob/(cm3·g−1DBJHd/nm
    SBA-15744751.100.0516.68
    CoOx(14.14)@SBA-15430380.680.0246.70
    CoOx(16.66)/SBA-15552690.820.0456.80
      a calculated by Brunauer-Emmett-Teller (BET) method;b calculated by t-plot method;c obtained at P/P0=0.995;d from BJH method.
     | Show Table
    DownLoad: CSV

    图3为催化剂CoOx@SBA-15、CoOx/SBA-15和CoOx/SiO2的TEM图. 从图3(a)、(b)可以观察到清晰的孔道结构,这与SBA-15的典型孔道结构相一致[7]. 此外CoOx/SBA-15和CoOx/SiO2的TEM图中可以观察到明显的金属颗粒,这是因为传统浸渍法合成的材料易在载体表面形成团聚而呈现出较大的金属颗粒. 对比图3(a)可以发现,利用固相研磨法合成的材料CoOx@SBA-15中金属颗粒借由焙烧过程中和模板剂P123的相互作用高度分散在SBA-15的孔道之中,而未见明显的金属颗粒.

    图 3  催化剂的TEM图
    Figure 3.  TEM images of catalysts

    为了进一步探究催化剂中的CoOx和载体之间的相互作用,对3种催化剂进行了氢气程序升温还原实验,所得结果如图4所示. 从图4可以看出,CoOx/SBA-15和CoOx/SiO2的TPR曲线中均可观察到2个明显的连续还原峰,其中CoOx/SiO2的还原峰出现在327°C和366°C附近,分别对应于Co3O4还原为CoO和CoO还原为金属Co两个过程[11],且第二个还原峰的强度较高,这是因为负载在SiO2上的Co3O4的颗粒粒径较大,因而CoO的还原程度较高[12]. CoOx/SBA-15的2个还原峰出现在304°C和338°C附近,且300—500°C之间的还原峰强度较低、范围较广,这归因于SBA-15的介孔结构. 虽然同为浸渍法合成,但相较于CoOx/SiO2,CoOx/SBA-15上的CoOx分散度更高、颗粒更小. 相对地,CoOx@SBA-15的TPR曲线在100—600°C 范围内未观察到明显的还原峰,仅在700°C后出现了强度较弱的还原峰,该还原峰归属于Co2+与SBA-15强相互作用形成的高分散的硅酸钴类物质的还原峰[12],表明CoOx@SBA-15中CoOx为高分散,与TEM和XRD结果一致.

    图 4  催化剂的程序升温H2还原图
    Figure 4.  H2-TPR of catalysts

    氯苯的初始浓度为0.18 mmol·L−1,催化剂的投加量为50 mg·L−1,PMS浓度为5 mmol·L−1时,分别以CoOx(14.14)@SBA-15、CoOx(16.66)/SBA-15和CoOx(13.38)/SiO2为催化剂在室温条件下进行氯苯的降解实验,所得结果如图5所示. 结果显示,3种催化剂均在活化PMS催化降解氯苯的反应中表现出较强的活性,反应120 min后,氯苯在CoOx(14.14)@SBA-15、CoOx(16.66)/SBA-15和CoOx(13.38)/SiO2 的3种催化剂上去除率分别为100%、89.3%和84.7%. 结合催化剂表征来看,SBA-15的介孔结构使得的催化活性CoOx(16.66)/SBA-15高于CoOx(13.38)/SiO2,具体来说,SBA-15的均匀孔结构有利于活性位点的分散同时还可以促进污染物在催化剂上的扩散,提高氯苯的降解效率. 而CoOx(14.14)@SBA-15的催化活性高于CoOx(16.66)/SBA-15是因为采用固相研磨法合成催化剂的过程中Co2+与模板剂P123互作用,使得CoOx高度分散在SBA-15的孔道中,形成对活性位点的限域作用[13]. 限域在孔道中的活性位点能够更高效地与PMS接触,提高PMS的活化效率,进而提高反应活性.

    图 5  不同催化剂条件下氯苯的去除率对比
    Figure 5.  comparison of catalytic activities for CB degradation using different catalysts

    氯苯的初始浓度为0.18 mmol·L−1,PMS浓度为5 mmol·L−1时,以CoOx(14.14)@SBA-15为催化剂探究催化剂投加量对CoOx@SBA-15催化PMS降解氯苯的影响,所得结果如图6所示. 催化剂投加量为50 mg·L−1和100 mg·L−1时,氯苯分别在70 min和30 min时实现完全降解,而当催化剂投加量为25 mg·L−1时,氯苯在120 min时的去除率仅为93.2%,这表明氯苯的降解速率随着催化剂投加量的增加而增大. 通过计算催化剂在最初3 min内的催化活性可以验证反应过程是否受降解中间体的竞争性吸附影响[14],催化活性计算结果如图6(b)所示. 从图6可以看出,不同催化剂投加量时的氯苯降解反应的初活性基本相同,因此该反应不受催化剂传质阻力影响.

    图 6  (a)催化剂投加量对CoOx@SBA-15催化PMS降解氯苯的影响;(b)在最初3 min内的相应初始活性
    Figure 6.  (a) Effect of catalyst dosage on CB degradation by PMS over CoOx@SBA-15 and (b) the corresponding initial activity within initial 3 min

    氯苯的初始浓度为0.18 mmol·L−1,催化剂的投加量为50 mmol·L−1,PMS浓度为5 mmol·L−1时,分别以不同负载量的CoOx@SBA-15为催化剂在室温条件下进行氯苯的降解实验,所得结果如图7所示. 从图7可以看出,当负载量为14.14%和26.02%时,CoOx@SBA-15可以在70 min内实现氯苯的完全降解,而当催化剂的负载量为8.14%时,反应120 min后氯苯的去除率仅为83%,氯苯的降解速率随着催化剂负载量的增加而增大. 图7(b)中展示的是不同负载量的CoOx@SBA-‍15催化剂的反应初活性,随着催化剂负载量的增加,催化反应在3 min内的初活性从0.368增长到2.297 mmol·L−1gCat−1min−1,这是因为负载量的增加使得催化反应的主要活性位点CoOx增多.

    图 7  (a)催化剂负载量对CoOx@SBA-15催化PMS降解氯苯的影响;(b)在最初3 min内的相应初始活性
    Figure 7.  (a) Effect of loading amount on CB degradation by PMS over CoOx@SBA-15 and (b) the corresponding initial activity within initial 3 min

    氯苯的初始浓度为0.18 mmol·L−1,催化剂的投加量为50 mg·L−1时,在其他条件不变的情况下,改变每次降解实验中氯苯和PMS的初始浓度,以进一步探究PMS在CoOx(14.14)@SBA-15上的活化机制,所得结果如图89所示. 从图8中可以看出,当PMS的浓度固定为5 mmol·L−1,氯苯的初始浓度从0.1 mmol·L−1增加至0.4 mmol·L−1时,氯苯的降解速率随之加快,反应初活性也从1.512 mmol·L−1gCat−1min−1增至3.185 mmol·L−1gCat−1min−1,这是因为随着氯苯初始浓度的增加,氯苯在CoOx(14.1)@SBA-15表面的吸附量不断增加,从而促进了氯苯的降解. 从图9中可以看出,当氯苯的初始浓度固定为0.1 mmol·L−1时,随着PMS浓度从2.5增加到10 mmol·L−1,反应初活性从1.429 mmol·L−1gCat−1min−1增至2.460 mmol·L−1gCat−1min−1,这说明PMS在催化剂表面的吸附量也会影响氯苯的降解反应.

    图 8  氯苯的初始浓度对CoOx@SBA-15催化PMS降解氯苯的影响
    Figure 8.  Effect of initial CB concentrations on CB degradation by PMS over CoOx@SBA-15
    (a)降解动力学;(b)在最初3 min内的相应初始活性(a) degradation kinetics and (b) the corresponding initial activity within initial 3 min
    图 9  PMS的初始浓度对CoOx@SBA-15催化PMS降解氯苯的影响
    Figure 9.  Effect of initial PMS concentrations on CB degradation by PMS over CoOx@SBA-15
    (a)降解动力学;(b)在最初3 min内的相应初始活性 (a) degradation kinetics and (b) the corresponding initial activity within initial 3 min

    为了进一步探究反应物在催化剂表面的吸附对反应的影响,使用Langmuir-Hinshelwood(L-H)模型对实验数据进行拟合,Langmuir吸附方程为:

    θ=bc1+bc (1)

    其中,θ、b、c分别代表吸附的反应物覆盖在催化剂表面的分数,吸附常数和反应物的浓度. 而在该反应中,可能吸附在催化剂表面的反应物有氯苯和PMS,因此假设氯苯和PMS的初始浓度分别为c1c2,当氯苯的初始浓度c1固定时,θ的计算公式为:

    θ=b1c11+b2c2+b1c1 (2)
    r1=dcdt=kθ=kb1c11+b1c1+b2c2 (3)
    1r1=1k+(1+b2c2)kb11c1 (4)

    式中,r1为氯苯的初始降解速率,k为反应速率常数,b1b2分别为氯苯和PMS的吸附常数. 从式4可以看出,当c2固定时,1/r11/c1成正比. 同理,当PMS浓度c2固定时,1/r21/c2也呈正比.

    L-H模型假设反应速率与吸附在催化剂表面的反应物浓度成正比,进而证明反应物的吸附是催化反应的速率控制步骤. 因此将1/r11/c11/r21/c2分别进行拟合,拟合结果如图8(b)和图9(b)的插图所示. 从图中可以看出,当氯苯的初始浓度改变时,1/r11/c1的线性关系良好(R2 > 0.98),同样的,当PMS的浓度改变时,1/r21/c2也呈现了良好的线性关系(R2 > 0.98),这表明氯苯和PMS在催化剂表面的吸附均在氯苯的降解过程中起着重要的作用,是反应的速率控制步骤.

    氯苯的初始浓度为0.18 mmol·L−1,PMS浓度为5 mmol·L−1,催化剂的投加量为50 mg·L−1 时,以CoOx(14.14)@SBA-15为催化剂探究反应体系初始pH氯苯降解的影响,所得结果如图10所示. 从图10可看出,当反应体系初始pH为6.0和10.0时,氯苯在70 min时可以实现完全降解,这表明CoOx@SBA-15催化剂在中性和碱性条件下都具有较高的催化活性. 然后当反应体系初始pH为3.0时,120 min时氯苯的去除率仅为54.3%,这表明酸性条件会抑制催化剂活化PMS降解氯苯,这是因为酸性条件下,H+易于HSO5-结合形成氢键,影响PMS的活化[15].

    图 10  pH对CoOx@SBA-15催化PMS降解氯苯的影响
    Figure 10.  Effect of pH on CB degradation by PMS over CoOx@SBA-15

    采用EPR技术检测反应体系中的活性自由基,具体方法见1.4,所得结果如图11所示. 从图11(a)可以看出,CoOx@SBA-15+PMS的EPR光谱图中未见明显的DMPO·-OH和DMPO·-SO4特征峰,这表明该体系中没有产生SO·4和·OH,但在该体系的光谱中出现了强度为1:2:1:2:1:2:1的7条分裂峰,这类分裂峰可归属于DMPO-X,形成原因为DMPO受单原子直接氧化,类似的EPR信号曾出现在Co2+-PMS体系中[16]. 除此之外,在CoOx@SBA-15+PMS+CB、PMS+CB、DMPO体系的EPR光谱图中还出现了3个等强度的分裂缝,此处可归属于DMPO的分裂峰[17]. CoOx@SBA-15/PMS/CB催化体系的DMPO-EPR结果表明,PMS在催化剂CoOx@SBA-15上的活化存在非自由基过程,PMS会与CoOx@SBA-15表面的活性位点结合形成亚稳态复合物,这种复合物具有强氧化活性,从而促进氯苯的氧化降解. 这也再次验证了,在氯苯的降解过程中,PMS在催化剂表面的吸附是反应的关键步骤. 为了鉴定反应体系中可能存在的其他活性自由基,使用TEMP(2,2,6,6-四甲基-4 哌啶)作为单线态氧(1O2)的捕获剂,所得结果如图11(b)所示,TEMP-EPR光谱图中出现了3个等强度的分裂峰,归属于TEMP-1O2,这表明CoOx@SBA-15/PMS/CB催化体系中存在单线态氧(1O2).

    图 11  使用(a)DMPO和(b)TEMP作为自由基自旋捕获剂的CoOx@SBA-15-PMS系统中的EPR光谱
    Figure 11.  EPR spectra in CoOx@SBA-15-PMS system using (a) DMPO and (b) TEMP

    为了进一步验证反应体系中存在的自由基种类,在反应体系中加入一定量自由基猝灭剂[18],其中甲醇(Methanol)用于猝灭SO·4和·OH,叔丁醇(tert-butanol)用于猝灭·OH,叠氮化钠(NaN3)则用于猝灭1O2,实验结果如图12所示. 与Control组相比,当反应体系中存在甲醇和叠氮化钠时,氯苯在120 min时的去除率从100%分别下降到9.3%和10.2%. 而当反应体系中存在叔丁醇时,氯苯的降解反应未被明显抑制,虽然降解速率有所下降但在90 min时可以实现完全降解. 因此反应体系中的主要活性物种是SO·41O2,·OH的作用较小.

    图 12  自由基猝灭剂对氯苯去除率的影响
    Figure 12.  Effect of different radical scavergers on CB removal

    (1)相较于传统浸渍法合成的催化剂CoOx/SBA-15和CoOx/SiO2,固相研磨法合成的催化剂CoOx@SBA-15的活性位点颗粒更小、分散度更高,因而在氯苯的降解实验中具有更高的催化活性.

    (2) CoOx@SBA-15催化活化PMS降解氯苯的反应符合Langmuir-Hinshelwood模型,表明PMS和氯苯在催化剂表面的吸附是该反应的关键步骤.

    (3)酸性条件下,H+易于HSO5-结合形成氢键,不利于PMS的活化,进而影响氯苯的降解效率.

    (4)自由基抑制试验表明CoOx@SBA-15/PMS/CB催化体系中的主要活性物种为SO·4、·OH和1O2.

  • 图 1  固定床热解试验装置示意图

    Figure 1.  Diagram of fixed-bed pyrolysis experimental apparatus

    图 2  ASR物料热解TG和DTG曲线

    Figure 2.  TG and DTG curves of ASR pyrolysis

    图 3  不同转化率下ASR热解动力学拟合曲线

    Figure 3.  Fitting curve of ASR pyrolysis kinetics under different conversion rates

    图 4  活化能E随转化率x的关系曲线

    Figure 4.  Curve of activation energy E with conversion rate x

    图 5  不同ASR样品在不同热解温度下三相产物分布规律

    Figure 5.  Distribution of pyrolytic products in different ASR samples at different pyrolysis temperatures

    图 6  不同样品和温度对热解气组成的影响

    Figure 6.  Effects of different samples and temperatures on gas composition

    图 7  不同温度下热解焦油GC-MS时域图

    Figure 7.  GC–MS spectra of pyrolytic tar with different temperatures

    图 8  焦油组分种类分布

    Figure 8.  Distribution of compounds in the tar fraction

    图 9  不同温度下热解焦FTIR光谱图

    Figure 9.  FTIR spectra of pyrolytic char with different temperatures

    图 10  热解焦拉曼光谱曲线分峰拟合

    Figure 10.  Fitting curve of Raman spectrum of pyrolytic char

    图 11  热解半焦重金属残留率

    Figure 11.  Residual rate of heavy metals in pyrolytic char

    图 12  热解半焦重金属富集率

    Figure 12.  Enrichment rate of heavy metals in pyrolytic char

    表 1  样品工业分析和元素分析

    Table 1.  Proximate and ultimate analyses of samples

    样品 工业分析wad/% 元素分析wad/% 干基低位发热量/(MJ·kg−1)
    M Ash V FC C H N S O*
    ASR1 0.81±0.08 17.93±0.21 73.50±0.20 7.76±0.14 45.70±0.22 3.94±0.11 1.09±0.09 1.57±0.10 28.96±0.15 21.89±0.41
    ASR2 0.99±0.07 24.51±0.25 61.53±0.21 12.97±0.18 48.60±0.21 8.03±0.15 1.54±0.11 1.28±0.11 15.05±0.18 20.46±0.23
    ASR3 0.76±0.08 44.12±0.48 48.14±0.18 6.98±0.09 31.51±0.23 2.88±0.14 0.66±0.08 1.95±0.09 18.12±0.20 15.66±0.20
    ASR4 1.35±0.10 49.91±0.45 43.21±0.18 5.53±0.11 31.50±0.18 3.25±0.17 0.70±0.09 1.94±0.07 11.35±0.21 12.69±0.18
    ASR5 1.17±0.09 63.29±0.55 30.88±0.22 4.66±0.12 17.35±0.16 1.58±0.17 0.78±0.08 1.34±0.07 14.49±0.20 8.69±0.19
      注:M代表水分,V代表挥发分,A代表灰分,FC代表固定碳,ad代表空气干燥基,*为通过差减法计算。
    样品 工业分析wad/% 元素分析wad/% 干基低位发热量/(MJ·kg−1)
    M Ash V FC C H N S O*
    ASR1 0.81±0.08 17.93±0.21 73.50±0.20 7.76±0.14 45.70±0.22 3.94±0.11 1.09±0.09 1.57±0.10 28.96±0.15 21.89±0.41
    ASR2 0.99±0.07 24.51±0.25 61.53±0.21 12.97±0.18 48.60±0.21 8.03±0.15 1.54±0.11 1.28±0.11 15.05±0.18 20.46±0.23
    ASR3 0.76±0.08 44.12±0.48 48.14±0.18 6.98±0.09 31.51±0.23 2.88±0.14 0.66±0.08 1.95±0.09 18.12±0.20 15.66±0.20
    ASR4 1.35±0.10 49.91±0.45 43.21±0.18 5.53±0.11 31.50±0.18 3.25±0.17 0.70±0.09 1.94±0.07 11.35±0.21 12.69±0.18
    ASR5 1.17±0.09 63.29±0.55 30.88±0.22 4.66±0.12 17.35±0.16 1.58±0.17 0.78±0.08 1.34±0.07 14.49±0.20 8.69±0.19
      注:M代表水分,V代表挥发分,A代表灰分,FC代表固定碳,ad代表空气干燥基,*为通过差减法计算。
    下载: 导出CSV

    表 2  ASR样品重金属元素含量

    Table 2.  Content of heavy metal elements in ASR mg·kg−1

    样品 元素种类
    Cd Cr Pb Ni
    ASR1 1.21±0.05 509.74±0.11 101.10±0.07 187.47±0.08
    ASR2 1.10±0.04 422.49±0.09 95.74±0.05 161.36±0.09
    ASR3 20.11±0.10 884.11±0.15 612.49±0.14 514.51±0.15
    ASR4 7.78±0.03 693.33±0.14 558.66±0.17 441.41±0.14
    ASR5 15.22±0.06 841.40±0.18 562.43±0.15 461.10±0.13
    样品 元素种类
    Cd Cr Pb Ni
    ASR1 1.21±0.05 509.74±0.11 101.10±0.07 187.47±0.08
    ASR2 1.10±0.04 422.49±0.09 95.74±0.05 161.36±0.09
    ASR3 20.11±0.10 884.11±0.15 612.49±0.14 514.51±0.15
    ASR4 7.78±0.03 693.33±0.14 558.66±0.17 441.41±0.14
    ASR5 15.22±0.06 841.40±0.18 562.43±0.15 461.10±0.13
    下载: 导出CSV

    表 3  热解焦拉曼光谱峰面积比

    Table 3.  Raman band area ratio of pyrolytic char

    热解温度/ ℃ ID1/IG
    ASR1 ASR2 ASR3 ASR4 ASR5
    500 5.17±0.09 3.71±0.15 5.02±0.13 6.57±0.12 4.24±0.11
    600 5.05±0.11 3.61±0.17 4.94±0.16 6.33±0.17 4.13±0.16
    700 4.92±0.10 3.52±0.12 4.88±0.12 6.10±0.09 4.03±0.14
    900 4.77±0.11 3.33±0.16 4.82±0.15 5.89±0.09 3.92±0.16
    800 4.38±0.15 3.12±0.12 4.78±0.11 5.74±0.08 3.77±0.12
    热解温度/ ℃ ID1/IG
    ASR1 ASR2 ASR3 ASR4 ASR5
    500 5.17±0.09 3.71±0.15 5.02±0.13 6.57±0.12 4.24±0.11
    600 5.05±0.11 3.61±0.17 4.94±0.16 6.33±0.17 4.13±0.16
    700 4.92±0.10 3.52±0.12 4.88±0.12 6.10±0.09 4.03±0.14
    900 4.77±0.11 3.33±0.16 4.82±0.15 5.89±0.09 3.92±0.16
    800 4.38±0.15 3.12±0.12 4.78±0.11 5.74±0.08 3.77±0.12
    下载: 导出CSV
  • [1] JANG Y C, CHOI K, JEONG J, et al. Recycling and material-flow analysis of end-of-life vehicles towards resource circulation in South Korea[J]. Sustainability, 2022, 14(3): 1270. doi: 10.3390/su14031270
    [2] TENG C Y, ZHOU K G, PENG C H, et al. Characterization and treatment of landfill leachate: A review[J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525
    [3] RABONI M, TORRETTA V, URBINI G, et al. Automotive shredder residue: A survey of the hazardous organic micro-pollutants spectrum in landfill biogas[J]. Waste Management & Research, 2015, 33(1): 48-54.
    [4] 宋斌. 中国报废汽车破碎残余物的理化特征与热重分析研究[D]. 上海: 上海交通大学, 2013.
    [5] MANCINI G, VIOTTI P, LUCIANO A, et al. On the ASR and ASR thermal residues characterization of full scale treatment plant[J]. Waste Management, 2014, 34(2): 448-457. doi: 10.1016/j.wasman.2013.11.002
    [6] MALLAMPATI S R, LEE B H, MITOMA Y, et al. Sustainable recovery of precious metals from end-of-life vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process[J]. Journal of Cleaner Production, 2018, 171: 66-75. doi: 10.1016/j.jclepro.2017.09.279
    [7] 陈铭. 面向材料效率的汽车产品回收利用关键技术研究[J]. 中国机械工程, 2018, 29(21): 2615-2625.
    [8] KHODIER A, WILLIAMS K, DALLISON N. Challenges around automotive shredder residue production and disposal[J]. Waste Management, 2018, 73: 566-573. doi: 10.1016/j.wasman.2017.05.008
    [9] ANZANO M, COLLINA E, PICCINELLI E, et al. Lab-scale pyrolysis of the automotive shredder residue light fraction and characterization of tar and solid products[J]. Waste Management, 2017, 64: 263-271. doi: 10.1016/j.wasman.2017.03.013
    [10] DE MARCO I, CABALLERO B M, CABRERO M A, et al. Recycling of automobile shredder residues by means of pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1): 403-408.
    [11] 倪飞箭. 报废汽车破碎残余物热裂解/气化回收机理与资源化初探[D]. 上海: 上海交通大学, 2015.
    [12] HAYDARY J, SUSA D, GELINGER V, et al. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 965-972. doi: 10.1016/j.jece.2015.12.038
    [13] YANG B, CHEN M. Influence of interactions among polymeric components of automobile shredder residue on the pyrolysis temperature and characterization of pyrolytic products[J]. Polymers, 2020, 12(8): 1682. doi: 10.3390/polym12081682
    [14] HAN S, JANG Y C, CHOI Y S, et al. Thermogravimetric kinetic study of automobile shredder residue (ASR) pyrolysis[J]. Energies, 2020, 13(6): 1451. doi: 10.3390/en13061451
    [15] SANTINI A, PASSARINI F, VASSURA I, et al. Auto shredder residue recycling: Mechanical separation and pyrolysis[J]. Waste Management, 2012, 32(5): 852-858. doi: 10.1016/j.wasman.2011.10.030
    [16] 赵岩, 邱朋华, 谢兴, 等. 煤热解动力学分布活化能模型适用性分析[J]. 煤炭转化, 2017, 40(1): 13-18. doi: 10.19726/j.cnki.ebcc.2017.01.003
    [17] DE CAPRARIIS B, SANTARELLI M L, SCARSELLA M, et al. Kinetic analysis of biomass pyrolysis using a double distributed activation energy model[J]. Journal of Thermal Analysis and Calorimetry, 2015, 121(3): 1403-1410. doi: 10.1007/s10973-015-4665-2
    [18] XU D, CHAI M, DONG Z, et al. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[J]. Bioresource Technology, 2018, 265: 139-145. doi: 10.1016/j.biortech.2018.05.092
    [19] BHAVANAM A, SASTRY R C. Kinetic study of solid waste pyrolysis using distributed activation energy model[J]. Bioresource Technology, 2015, 178: 126-131. doi: 10.1016/j.biortech.2014.10.028
    [20] MIURA K. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data[J]. Energy & Fuels, 1995, 9(2): 302-307.
    [21] MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy & Fuels, 1998, 12(5): 864-869.
    [22] 崔童敏. 快速热解过程中煤生物质初次破碎机理及其化学结构变化的研究[D]. 上海: 华东理工大学, 2017.
    [23] NI F J, CHEN M. Research on ASR in China and its energy recycling with pyrolysis method[J]. Journal of Material Cycles and Waste Management, 2015, 17(1): 107-117. doi: 10.1007/s10163-014-0232-3
    [24] YUE C Y, GAO P P, TANG L F, et al. Effects of N2/CO2 atmosphere on the pyrolysis characteristics for municipal solid waste pellets[J]. Fuel, 2022, 315: 123233. doi: 10.1016/j.fuel.2022.123233
    [25] GUO Q J, ZHANG X, LI C, et al. TG-MS study of the thermo-oxidative behavior of plastic automobile shredder residues[J]. Journal of Hazardous Materials, 2012, 209: 443-448.
    [26] 郭怡君, 李军, 黄宏宇, 等. 有机固体废弃物热解技术及热解气组成综述[J]. 新能源进展, 2023, 11(2): 106-122.
    [27] 李超, 刘新民, 耿启金, 等. 热重质谱联用研究废旧汽车高聚物热解特性[J]. 环境科学学报, 2011, 31(8): 1724-1729. doi: 10.13671/j.hjkxxb.2011.08.025
    [28] ZHOU R S, CAO R, LIU Y Q, et al. Study on the characteristics and mechanism of fast co-pyrolysis of coal tar asphaltene and biomass[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105409. doi: 10.1016/j.jaap.2021.105409
    [29] YANG B, CHEN M. Py-FTIR-GC/MS analysis of volatile products of automobile shredder residue pyrolysis[J]. Polymers, 2020, 12(11): 2734. doi: 10.3390/polym12112734
    [30] CHEN B, LIU B, CHAO Y, et al. Formation mechanism of biomass aromatic hydrocarbon tar on quantum chemistry[J]. Journal of Renewable Materials, 2022, 10(12): 3491-3504. doi: 10.32604/jrm.2022.021302
    [31] HE X Q, LIU X F, NIE B S, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563. doi: 10.1016/j.fuel.2017.05.101
    [32] XIE X, ZHAO Y, QIU P H, et al. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks[J]. Fuel, 2018, 216: 521-530. doi: 10.1016/j.fuel.2017.12.049
    [33] XIE X, LIU L, LIN D, et al. Influence of different state alkali and alkaline earth metal on chemical structure of Zhundong coal char pyrolyzed at elevated pressures[J]. Fuel, 2019, 254: 115691. doi: 10.1016/j.fuel.2019.115691
    [34] WANG R Z, YUE J F, JIANG J C, et al. Hydrothermal CO2-assisted pretreatment of wheat straw for hemicellulose degradation followed with enzymatic hydrolysis for glucose production[J]. Waste and Biomass Valorization, 2021, 12(3): 1483-1492. doi: 10.1007/s12649-020-01103-4
    [35] 余俊钦, 卫俊涛, 丁路, 等. 生物质灰添加对无烟煤煤焦气化特性的影响[J]. 燃料化学学报, 2018, 46(10): 1161-1167.
    [36] SOLOMON P R, CARANGELO R M. FTIR analysis of coal. 1. techniques and determination of hydroxyl concentrations[J]. Fuel, 1982, 61(7): 663-669. doi: 10.1016/0016-2361(82)90014-X
    [37] LI Z Y, HUANG Y J, ZHU Z C, et al. Co-pyrolysis of sewage sludge with polyvinyl chloride (PVC)/CaO: Effects on heavy metals behavior and ecological risk[J]. Fuel, 2023, 333: 126281. doi: 10.1016/j.fuel.2022.126281
  • 加载中
图( 12) 表( 3)
计量
  • 文章访问数:  1987
  • HTML全文浏览数:  1987
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-07-13
  • 录用日期:  2023-11-16
  • 刊出日期:  2023-11-26
谭金鹏, 李伟锋, 陈雪莉. 预分选汽车破碎残余物热解特性及其动力学分析[J]. 环境工程学报, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046
引用本文: 谭金鹏, 李伟锋, 陈雪莉. 预分选汽车破碎残余物热解特性及其动力学分析[J]. 环境工程学报, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046
TAN Jinpeng, LI Weifeng, CHEN Xueli. Pyrolysis characteristics and dynamic analysis of pre-separated automobile shredder residues[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046
Citation: TAN Jinpeng, LI Weifeng, CHEN Xueli. Pyrolysis characteristics and dynamic analysis of pre-separated automobile shredder residues[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3647-3659. doi: 10.12030/j.cjee.202307046

预分选汽车破碎残余物热解特性及其动力学分析

    通讯作者: 李伟锋 (1976—) ,男,博士,教授,liweif@ecust.edu.cn
    作者简介: 谭金鹏 (1997—) ,男,硕士研究生,jp_tan97@163.com
  • 华东理工大学含碳废弃物资源化零碳利用教育部工程研究中心,上海 200237
基金项目:
国家自然科学基金面上资助项目 (22278133) ;国家自然科学基金联合基金重点资助项目 (U21B2088)

摘要: 我国每年产生的汽车破碎残余物 (automobile shredder residue,ASR) 数量巨大,亟需无害化处理和资源化利用。固废热解过程因产生的二次污染物少,且产品利用价值高,逐渐成为研究的热点。针对某报废汽车生产线产生的5种典型预分选ASR物料,在固定床反应器中考察了温度 (500~900 ℃) 和物料种类对ASR热解三相产物组成、热解焦微观结构及重金属分布规律的影响,通过热重 (TG) 分析ASR从常温到900 ℃热失重过程,并采用分布式活化能 (DAEM) 法计算其热解动力学。结果表明,ASR热解主要发生于200~500 ℃范围内,热解反应活化能为17.39~195.21 kJ·mol−1。提高热解温度,ASR样品可产生更多热解气,且H2、CO和CH4等成分占比增加,焦油产生量减少,同时促进焦油二次裂解以及组分向苯环化转化。红外和拉曼光谱分析表明,热解温度升高,热解焦中主要发生-OH、-CH3、-C=C-以及-COOH等分子基团的脱除,不同ASR热解焦ID1/IG值在3.77~6.57内,石墨化程度增大,热解焦中重金属分布受温度和物料种类影响显著。本研究结果可为开发ASR热解技术提供参考。

English Abstract

  • 受汽车行业发展的影响,每年报废汽车数量逐年增加,汽车破碎残余物 (automobile shredder residue,ASR) 作为汽车报废行业产生的工业固体废弃物,据估计,到2025年国内ASR产生量可达每年7×106 t[1],且呈现逐年增长趋势,若未能得到有效处置反而加重环境污染。为深入贯彻落实“十四五”规划,加强资源集约和再利用,需大力推进固体废弃物“资源化”、“减量化”和“无害化”处理,强化循环经济体系闭环,寻求ASR妥善的处置方法成为当前研究的热点之一。

    研究表明采用传统填埋方式处理ASR,在填埋场浸出物中含有大量有毒化合物和重金属[2-3],ASR热值与褐煤热值相当[4],可作为垃圾焚烧发电厂原料,但焚烧产生大量飞灰以及二噁英等污染性物质,限制了焚烧处理ASR的进一步发展[5]。此外,ASR中Zn (2.10%) 、Cu (1.85%) 、Pb (0.26%) 、Cr (0.16%) 和Ni (0.12%) 等重金属含量高于一般工业固废[6],这使焚烧处置ASR时重金属污染控制问题比垃圾焚烧过程更加严重。相比之下,热解在缺氧条件下进行,产生的NOx、SOx及二噁英等二次污染物大幅减少。ASR主要包括塑料、橡胶、纤维、木材、纸张和泡绵等含碳物质[7],以及少量玻璃、污垢、岩石、沙石和残余金属碎屑等低价值组分[8],是一种典型的含碳基质固体废弃物。ANZANO等[9]通过基础理化性质分析,结果显示ASR热值为10~27 MJ·kg−1。ASR在500 ℃时完成主体分解[10],每千克ASR产生的热解气热值高达11 MJ,焦油产物中较高的碳含量使其能量回收价值颇高[11]

    目前,有关ASR热解的研究多集中在ASR不同物料组分对热解的影响上。HAYDARY等[12]发现ASR中橡胶含量的增加可提高焦炭产率,塑料含量的增加会导致气体产率的增加。YANG等[13]研究不同聚合物组分共热解过程时发现,塑料改变了纺织品和泡沫的分解机理,但对橡胶和皮革影响不大。为更深入诠释不同组分间的热解特性,HAN等[14]从ASR中分离出塑料、纤维、海绵和橡胶4种组分,并按恒定比例得到混合样品。结果显示,海绵和塑料在400 ℃发生较大程度反应,橡胶和纤维在该温度下反应程度较小。且热重分析结果表显示,橡胶和纤维有3个失重峰,海绵和塑料呈单一失重峰,说明后者化合物更加简单。SANTINI等[15]采用密度浮选的方式获得10种轻、重质ASR混合样品,热解实验结果显示浮选方式有效聚集了ASR中的聚合物,轻质有机组分更适合热解回收,且金属/重金属在热解过程中被释放出来,更易从热解焦中分离。但组分构成不同的ASR经热解后对热解气、焦油和热解焦的成分影响以及成分分析的研究尚未见报道,其热解特性和热解动力学分析需要进行深入研究。

    因此,本研究从某报废汽车流水线以机械破碎结合比重筛选产生的5种典型预分选ASR物料为研究对象,在实验室固定床反应器中展开热解实验,通过气相色谱 仪(GC) 、气质联用仪 (GC-MS) 、拉曼光谱仪 (Raman) 、傅里叶红外光谱仪 (FTIR) 以及等离子体发射光谱仪 (ICP-OES) 分别对热解气组成、焦油组成、热解焦微观结构及其重金属分布等热解产物特性进行系统深入研究,揭示预分选后不同物料组成和温度对热解的影响规律,同时采用热重分析仪 (TGA) 对ASR热解过程动力学进行分析,为ASR热解技术开发提供重要理论支撑。

    • 实验样品来源于某工厂报废汽车整车破碎拆解流水生产线上不同出料口产出的物料,根据物料比重和粒径进行筛选。本研究选择5个典型样品,依次编号为ASR1、ASR2、ASR3、ASR4和ASR5。ASR1与ASR2分别以纤维和橡胶为主;ASR3主要为含尘土的块状泡棉、皮革、纺织物和丝织品等,是块状的垃圾混合物;ASR4主要含小颗粒木屑、塑料片及纤维绒毛及沙土等;ASR5主要是金属碎屑、碎砂石、飞灰与细碎泡沫、木屑等小粒径物质混合物。样品工业分析和元素分析如表1所示。总体来看,ASR1和ASR2灰分低、有机物含量高、热值高,ASR3、4和5灰分含量逐渐增加、热值逐渐降低。对5种ASR中Cd、Cr、Pb、Ni四种重金属含量进行分析,重金属含量如表2所示。因Cd元素含量较低,在后续重金属分布中不再深入分析。

    • ASR热重实验采用同步热分析仪法 (STA449F3 TG-DSC,德国NETASCH公司) 进行。在实验过程中,选择升温速率为5、15和25 K·min−1,从室温升至900 ℃。使用直径约为8 mm、高度约为3 mm的氧化铝坩埚进行实验,为了减小样品内部传热和扩散影响并保证样品的均质性,实验前将样品烘干粉碎以充分混合,并筛分至120目 (0.125 mm) ,控制氮气流量在100 mL·min−1内,并控制样品用量在 (10±0.5) mg。实验时,将ASR原料放置于坩埚中,在设定的升温速率下将样品升温至900 ℃,持续观察失重情况,直至无明显失重。

      图1所示,为ASR固定床热解实验装置示意图。实验时炉体以5 K·min−1的速率升温至设定温度 (500~900 ℃) 后稳定15 min,选用N2作为载气,以450 mL·min−1的速度向炉内通入载气,维持石英管内惰性气氛。每次实验称取 (5±0.5) g样品,反应持续45 min。通过铝箔气袋收集冷却和过滤干燥后的热解气。反应炉冷却至室温后,为保证实验数据准确性,每个实验条件下至少进行3次平行实验,计算平均值。取出焦样称重,热解焦油通过冷凝管进行冷凝收集,使用二氯甲烷溶剂 (分析纯,99.99%) 溶解蛇形冷凝管管壁粘附的热解焦油,获取的热解焦油溶液存储在−10 ℃的冷冻柜中。

    • 1) 动力学分析方法。分布式活化能法 (DAEM) 是一个多反应模型,其模型假设为:热解过程由许多相互独立的一级不可逆反应组成;每个反应有确定的活化能,所有反应的活化能值呈某种连续分布。该模型对固相反应具有良好的适应性[16],不仅能较好地描述热解失重的真实过程,而且能够在较宽温度及升温速率范围内对反应过程进行准确描述,并在煤、生物质和固体废弃物等热解研究中得到广泛运用[17-19],DAEM法在热解动力学研究中的适用性得到较好的验证。ASR作为一种典型的工业固体废弃物,在本研究中,采用DAEM进行动力学分析,ASR的非等温热解过程中转化率x与时间t的关系可用DAEM模型表示[20],如式(1)所示。

      式中:T是绝对温度,K;R是通用气体常数,J·mol−1·K−1k0是频率因子,s−1E是活化能,kJ·mol−1f (E) 是活化能的分布函数。

      x是样品转化率,其定义如式(2)所示。

      式中:w0wtwf分别指煤样初始重量、t时刻样品重量和反应结束时刻样品重量,mg。

      为估算动力学参数,MIURA等[21]基于DAEM方程提出了一种简易积分法,如式(3)所示。

      式中:β是升温速率,K·min−1R是通用气体常数,8.314 J·mol−1·K−1

      2) 产物分析方法。利用气相色谱仪 (GC7890A,Agilent) 定量测定不同温度下热解前后释放的气体组分,分析其中的N2、H2、CO、CO2及CH4等组分含量,利用N2示踪法来进行定量计算[22]。热解焦油样品采用气相色谱质谱联用仪 (GC-MS,7890A/5975C,Agilent) 进行检测,色谱柱为Agilent HP-5MS毛细管柱,进样口温度为280 ℃,初始温度40 ℃保持2 min,以10 K·min−1升至280 ℃。气质联用仪器可对测试所得时域图进行图谱比对分析,得到焦油中各成分物质化学式以及相对含量大小。采用压片法借助红外光谱仪 (FTIR,Nicolet iS50,Thermo Fisher) 分析热解焦的官能团,采用拉曼光谱仪 (Raman,DRX,Thermo Fisher) 分析碳结构特性,实验每次随机选取若干热解焦颗粒,使用455 nm波长激光,采集800~2 000 cm−1范围内的光谱,分辨率为0.5 cm−1。采用微波消解仪和等离子体发射光谱仪 (ICP-OES,Agilent 5110) 测定物料原样及热解焦中重金属含量,微波消解过程中,在强酸环境下对样品进行加热,消解液中硝酸 (HNO3) 与氢氟酸 (HF) 按3∶1体积比混合,将重金属转化为离子形态的可溶性盐,取所得消解液检测重金属元素含量。

    • 1) ASR热失重过程分析。图2为不同ASR物料在不同升温速率下的热解TG和DTG曲线。实验结果表明,5种ASR样品均经历了3个阶段的失重过程:200~500、500~600和600~800 ℃,其中主要的热解反应温度区间为200~500 ℃。在主反应温度区,ASR中部分含碳有机物分子因其键能较低开始发生裂解,同时部分含氧官能团支链也会发生热裂解分解成小分子化合物,以挥发分形式脱离物料,从而引起物料失重。500~600 ℃为衡定速率失重区间,在此温度区间内5种样品均未出现失重峰,表明在该温度范围内并未发生明显反应。600~700 ℃为高温下的失重温度区间,其中ASR5样品持续至750 ℃。在此温度范围内,剩余有机物与半挥发性物质基本反应完全,同时推测存在部分无机物受热分解,导致仍有小程度失重。此外,高温下热解气中的CO2与少量固定碳发生气化反应,进一步增加样品失重。

      图2显示,经预分选处理后5种ASR物料仍在500 ℃完成主要热解过程,与DE MARCO等[10]研究结论相符,说明预分选并不影响ASR热解主反应温度区间。但区别在于,ASR1、2和3在500 ℃以下均有2个失重峰,表明有2个主反应,超过500 ℃后有小程度失重;ASR4与ASR5在500 ℃以下主失重峰相似,均为单峰,在600~750 ℃内两种物料均出现第二阶段反应,对应失重率达5%。分析认为,预分选改变了样品中主要成分占比,导致失重峰发生较大变化。根据Ni的研究[23],ASR样品成分复杂,包括海绵和泡沫在内的纺织品热解反应速率峰值在330 ℃左右,塑料和橡胶有2个热解反应速率峰,第一个在410 ℃左右,第二个在660 ℃左右。因此,纺织品、塑料和橡胶在330~500 ℃主要占失重的第一个峰。此外,ASR1主要成分为纤维,在240 ℃左右出现热解反应速率峰,低于纺织品、塑料和橡胶等组分热解反应速率峰对应温度,说明在低温下纤维类组分更易发生热解。

      2) ASR热解动力学分析。根据热失重曲线和式(2)与式(3),在3种不同升温速率下选定同一转化率x,选择ln (β/T2) 对1/T作图,相同转化率x条件下ln (β/T2) 与1/T应为线性关系,其斜率即为活化能E图3为拟合得到的ln (β/T2) 对1/T的关系曲线。根据ln (β/T2) 对1/T的线性回归拟合数据,图4为不同ASR样品计算活化能E随转化率x的关系曲线。如图所示,由于不同的热解温度范围内不同官能团分解所需的活化能存在差异,以ASR1为例,转化率从10%增至90%,热解活化能由31.39 kJ·mol−1升至105.56 kJ·mol−1。随着转化率增大,活化能逐渐增大,分析认为反应前期主要是大分子结构中成键强度弱的官能团先分解,不稳定的官能团断裂所需能量更少,随着反应的进行,不稳定的官能团已分解,剩余官能团更加稳定,此时化学键断裂需要更多能量[21]

      对比5种典型ASR物料,在相同转化率下,ASR3在各转化率下均有最低活化能,表明其在5种样品中反应难易程度最低。ASR4在转化率小于60%时,活化能增长趋势同余下4种样品;当转化率大于60%时,活化能大幅度增加,并在转化率到达90%时增至195.21 kJ·mol−1。分析认为ASR4在650 ℃以上的仍有较大质量损失,且TG曲线显示失重持续到750 ℃,其结果导致在更高的温度下进行反应需要更大的活化能,在活化能上体现为E值陡增。根据热失重过程特性可以得知,预分选不仅对5个ASR样品的组分和理化性质影响显著,而且改变了不同温度下的本征反应过程[12-13]

    • 图5(a)、(b)、(c)分别为5个样品在不同温度下热解焦产率、热解焦油产率和热解气产率分布规律。在500~900 ℃范围内,随温度升高,产气量呈现增长趋势。在热解过程中,弱化学键率先发生断裂形成气体,然后大分子物质裂解形成焦油,官能团也随之破裂生成气体[24]。因此,在整个热解进程中气体产率逐渐增加。当热解温度高于500 ℃,随反应器温度逐步升高至900 ℃,热解焦产率持续减小。在相同温度下,ASR1和ASR2的焦产率比ASR3、4和5小30%,这主要受预分选对ASR主要成分的影响,结合表1数据可知,ASR3、4和5含较多灰分,因其不参与热解反应,导致热解焦残留占比较大。此外,ASR1和ASR2样品含碳有机物比值更高,在整个热解过程中热解生成挥发分占比更大,导致热解焦产率小于ASR3、4和5。热解温度在500~900 ℃时,ASR1和ASR2在900 ℃气相产率相比于500 ℃提升约5倍,ASR3、4和5热解气产率提高约4倍,ASR1在900 ℃下热解气产率高达76.52%,ASR4仅占33.52%。可以看到,预分选可有效提升ASR原料能源转化效率。同时,高温还会引发焦油二次裂解,焦油量进一步减少,其中ASR1和ASR2焦油产率高于其他3种物料,且受温度影响较大,随热解温度提升焦油产率减少约45%,但不同的是,ASR2在900 ℃焦油产率维持在11.5%的较高水平。以上结果表明,提高温度有利于物料热解,产生更多的热解气体,且促使热解进行更加彻底,同时抑制焦油产生。预分选后不同ASR样品热解产物分布差异明显,ASR1和2产焦少、热解气和焦油生成量高。

    • 图6是不同ASR样品热解气成分随温度变化曲线。在较低热解温度下,按照组成的体积占比,相对含量较高的为CO2、H2、CO以及CH4。这是由于ASR中聚合物热解产生较小的分子,分子进行环化反应或分解成轻质烃,形成各种不同长度的分子链。随着温度升高,反应产生的环状化合物和烃类化合物进一步裂解生成CH4、CO2和CO等分子[25]。而C2H2因成键困难,形成条件严苛,故含量最低,且基本不受温度的影响。从变化趋势中可以看到,除CO2和C2H2外,其它气体随温度的上升含量均有所提升,其中ASR3、4的CH4含量随温度的提高出现明显的先升后降趋势,这是由于高温下热解气中发生水煤气变换反应 (CO+H2O=CO2+H2、CH4+H2=CO+3H2) [26],以致CH4含量出现波动。而在5种ASR样品热解气中CO2含量随温度的升高反有明显地下降,这是因为热解阶段析出的CO2主要来自于低温下参与芳化缩聚的C=O和C-O自由基团发生重整等反应[27],当温度上升受自由基数量的限制,CO2生成量降低。而焦油中的组分在更高温度下发生二次裂解,生成小分子气态物质,再次降低了CO2在热解气中的占比[28]。此外,高温下开始发生反应 (C+CO2→2CO) ,即CO2与热解焦中的固定碳发生反应,在宏观上表现为CO2向CO转变,也会降低CO2的生成量,但该反应有利于热解气有效气成分的增加。在不考虑CO2占比的前提下,在ASR2中500、600和700 ℃下主要为CO2和H2,800和900 ℃下以CH4和CO为主,在ASR1中主要为CO;ASR3、ASR4和ASR5中800 ℃以下H2占比最高,900 ℃时CO有显著提升。可以看到,预分选后不同物料对热解气组成有较大影响,ASR3、ASR4与ASR5气体组成更加相近,ASR1和ASR2热解气在最主要成分上有所不同。

    • 以ASR1样品为例,图7为不同热解温度下热解焦油GC-MS时域图,分析采用了面积归一法进行积分定量,并结合NIST标准质谱图库进行组分定性。为了保证实验数据的可信度,选择与焦油中已知组分分子式相似度达到90%以上的物质作为焦油组分。由于焦油中包含许多种不同的组分,为简化研究,仅统计含量超过2%的组分。对ASR在不同热解温度下收集到的焦油成分分类统计,结果如图8所示。统计结果表明,焦油随温度升高,成分从低温的链烃、环烃转向生成多苯环类及其衍生物。将焦油成分进行分类,主要分为链烃、环烃、单苯环烃、多苯环烃及其衍生物、含O烃类衍生物以及杂原子化合物 (如N、Si、S和Cl等) 共6大类物质。在600 ℃以下ASR1、2和3焦油中物质更多以链烃和含氧烃类衍生物为主,ASR4和ASR5以链烃和多苯环烃及其衍生物为主。当温度上升至900 ℃,5种样品中烃类和含氧烃类衍生物等含量急剧下降,以多苯环烃及其衍生物为主要成分。在YANG等[29]采用了TG-FTIR-GC/MS分析技术对ASR热解焦油分析后发现,焦油中许多物质具有不稳定或较弱的化学键,如=CH-,=CH2,-C=C-和-C=CH2等,这些化学键在高温下更易发生转化,结合焦油中物质种类的转变趋势,表明焦油成分在温度提升后发生了弱键断裂和苯环化变化[24,30]

    • 1) 官能团表征分析。傅里叶红外光谱 (FTIR) 可反映出物质表面所含官能团信息,对同种ASR物料不同温度下所得谱图进行对比,可从官能团角度分析热解焦结构变化,结果如图9所示。特征峰变化主要为:醇、酚类中的-OH伸缩振动 (3 650-3 600 cm−1) ,为尖锐吸收峰,分子间-OH伸缩振动 (3 500-3 200 cm−1) ,为宽吸收峰;胺类中-NH的伸缩振动 (3 500-3 300 cm−1) ;羧酸中-COOH伸缩振动 (3 400-2 500 cm−1) ;-C=C-烯烃类伸缩振动 (1 610-1 590 cm−1) [31-32];脂肪链末端-CH3对称弯曲振动 (1 460-1 380 cm−1) ;3H取代的伸缩振动 (850-720 cm−1) [33-34]。在3 450 cm−1波段出现了1个宽且强的吸收峰,这表明ASR中存在醇、酚、羧酸等游离态羟基基团伸缩振动以及可能的胺类中-NH的伸缩振动,从而使得伸缩振动范围较宽。在500~900 ℃内,随温度的升高峰强均有所减弱,说明在热解过程中,热解焦中有醇、酚分子间羟基或者羧基发生了脱羟基反应或胺类物质中-NH脱除。值得注意的是,ASR1热解焦随温度的上升出现了3 650 cm−1对应的醇类、酚类中的-OH伸缩振动。ASR1、2、3和4热解焦中1 600 cm−1吸收振动峰随温度上升而消失,说明对应该范围的-C=C-官能团在反应中发生转变,分析认为是-C=C-向苯环化转变导致。ASR1、2、4和5热解焦中1 430 cm−1吸收振动峰随温度的升高而消失,表明在此范围内对应烷烃上-CH3脱除,脱离的-CH3自由基或生成气相中的小分子物质。780 cm−1吸收振动峰对应的H取代,表明热解焦中H自由基的脱除,有利于热解气中小分子物质的产生,例如CH4、H2和碳氢化合物的生成。可以看到,随热解温度的升高,热解焦表面部分分子基团脱除,尤其以官能团为主的支链发生断裂,例如-OH、-CH3、-C=C-以及-COOH等。小分子官能团的消失是热解气中轻质物质和一碳化合物等产生的原因,升高温度破坏小分子官能团加剧热解焦进一步碳化,同时促使热解焦碳晶结构向更有序化方向转变[28]

      2) 碳结构分析。原始拉曼谱图通常是由多个特征峰叠加而成,通过分峰拟合可分解成4个洛伦兹子峰 (D4、D1、G、D2) 和1个高斯子峰[35]。以500 ℃热解焦为例,拉曼图谱分峰拟合结果如图10所示。D1峰与G峰的积分面积之比 (ID1/IG) 通常被用于定量表征热解焦结构在气化过程中的变化,表示碳结构的晶格度或石墨化程度,研究发现,ID1/IG与晶体的平面尺寸成反比,即ID1/IG比值的降低表明煤焦有序化程度升高[36]表3为热解温度为500~900 ℃下热解焦拉曼峰面积比ID1/IG。如表所示,5种ASR样品的热解焦ID1/IG值均随热解温度的升高而降低,ID1/IG值越小表明半焦的有序化程度越高,也即热解焦石墨化程度越高,结合热解焦FTIR表征结果,官能团的消失使自由基脱除,从而使碳晶结构向更有序化发展。研究还发现,在500~900 ℃内,ASR3和ASR5热解焦ID1/IG值始终低于ASR1、2和4,说明除温度对ID1/IG值有影响外,物料组成不同也是影响热解焦结构的重要原因素之一。

      3) 重金属分布。已有研究表明,ASR含较高含量重金属[11],在热解过程中重金属会进一步向热解焦中富集。对热解半焦中Cr、Pb和Ni含量进行分析,参考LI等[37]对热解半焦中重金属含量的分析方法,以热解半焦中重金属的富集率 (ER) 和残留率 (RR) 作为评价热解后重金属富集和固定程度的参数,计算公式如(4)~(5)所示。

      式中:Cx为生物炭中重金属的质量分数,mg·kg−1C为原料中重金属的质量分数,mg·kg−1

      式中:y为热解半焦收率,由热解半焦质量与热解原料质量之比计算得出。

      含量测定选取500、700、900 ℃下所得焦样,热解焦重金属富集率结果如图11所示。随温度的提高,5个样品热解焦中重金属的残留率均有不同程度的下降,表明温度的提高,重金属向热解气和焦油中转移,但固存在焦中的含量在800 ℃以下仍能保持50%以上,多数重金属保留在热解焦中。Ni在物料ASR1和ASR2中残留率表现不同于ASR3、4和5,残留率基本不受温度的影响。这种差异性可能的解释是由ASR物料组成的差异造成的。但在ASR3、4和5中Ni元素残留率随温度的升高而降低,这与Cr、Pb没有差异。

      热解过程中,重金属按照去向分为3个方向:热解气、焦油和热解焦。在一般情况下,期望在反应过程中的重金属应尽可能保留于固相中,以降低重金属伴随热解气和焦油发生逃逸,增加环境污染压力和后续工艺除杂的复杂程度。图12为5种ASR物料在不同温度下热解后重金属富集的结果。富集率以1作为标准:热解半焦中重金属含量与等量原料中的含量比值为1。从结果来看,按富集能力从大到小排列:Cr>Pb>Ni。Cr元素整体ER值均大于1,且基本不受温度变化的影响。从ER值的大小来看,ASR1和ASR2样品在Cr元素固定上更具优势,而ASR3、4和5也能保持Cr基本固定在半焦中。Pb元素的ER值在5种ASR物料中的表现类似,随温度的升高ER值减小,但在ASR1和ASR2中Pb元素的ER值变化幅度高于ASR3、4和5。Ni元素ER值在不同物料中的变化差异较大,在ASR1、ASR2中ER值随温度升高而增大,在ASR3、ASR4、ASR5 ER值随温度升高而略有减小。总体上,ASR中不同重金属的富集程度主要受物料种类和热解温度的影响。

    • 1) ASR热解经历3个失重阶段,反应温度区间集中于200~500 ℃,不受预分选ASR样品组成影响。热解动力学分析显示不同预分选样品活化能差异显著,主要与物料组分热解难度相关。热解产物产率分布受ASR物料成分影响明显,但总体上随热解温度升高,热解气产率增大,焦油发生二次裂解,生成量减少,且随温度升高焦油向多苯环物质转化。

      2) 热解焦主要发生-OH、-CH3、-C=C-以及-COOH等分子基团的脱除,温度升高热解焦石墨化程度增大,但不同预分选样品石墨化程度差异明显。热解半焦中重金属残留率与热解温度和样品组成密切相关。热解过程重金属固存在半焦的比例整体保持在40%以上,过高的热解温度不利于重金属的固定。

    参考文献 (37)

返回顶部

目录

/

返回文章
返回