-
赤泥 (red mud,RM) 是铝土矿精炼氧化铝时产生的废弃物,据统计平均每吨氧化铝生产过程中就会产生1~1.8 t RM[1],我国为氧化铝生产大国,2021年RM产量约为1.12×108 t。拜耳法生产氧化铝流程下产生的RM主要成分是Fe2O3[2] ,呈强碱性。以往RM的处理方式主要为露天堆放,不仅占用大量的土地资源,还会造成土壤和水体的污染。目前RM资源化利用的方向包括回收有价金属、制备混凝剂及吸附剂和作为建筑材料进行利用,然而目前其综合利用率很低 (约8%) ,因此亟需开发其新的资源利用方式。近年来RM作为催化剂的潜力受到了众多研究者的关注,RM由于富含氧化铁,常作为廉价的Fe基催化剂使用。据报道,RM作为催化剂有促进焦油裂解的效果[3-6],在降酸升级生物油中具有取代HZSM-5的潜力[6-7]。特别是有研究提出RM有定向催化能力,例如有文献提出RM可以酮化热解产物中油/气产物,增强酮和醛的选择性生产[8-10],而另一些文献提出RM催化生物质热解可以有效生产芳烃[11-16]。造成这样不同的定向催化效果可能和选用的RM中Na、Ca等原有成分差异或后续负载的不同元素有关[17-18],另外还需要考虑煅烧等活化前处理中造成RM中主要活性组分Fe基价态发生的变化对催化效果的影响。
人造板是利用木材在加工过程中产生的边角废料,添加胶粘剂制作的板材。2021年我国人造板总产量约为3.37×108 m3,按照10%的报废率,年产废弃人造板十分可观。传统的处理方式 (填埋或燃烧) 由于人造板中3%~15%粘合剂的限制会造成环境污染与资源浪费,例如填埋会占用大量土地资源,且板材里的粘合剂难以降解导致人造板降解时间长。而燃烧可以通过提升原料颗粒温度[19]、促进氮中间体破裂等途径提高人造板中杂原子 (氮、氯等) 向小分子气体的转化率[20-21],造成环境污染。人造板热解相对于燃烧可以减少或调节氮释放[19, 22]以促进其清洁利用,还可以回收高附加值的生物油。因此,本研究提出一种利用RM催化热解人造板以实现以废治废的策略,为RM和人造板的消纳提供了新的途径。由于人造板既包含生物质,又包含作为粘合剂等使用的聚合物,导致其产物和热解机理相对单纯生物质或聚合物更加复杂。AHMED等[23]研究了低密度聚乙烯和松木的共热解,发现二者存在协同效应,协同反应增强了油产率且导致油中脂肪族C-C含量增加,而添加RM催化共热解后消除了生物质与塑料中间体之间的协同作用,从而提高了气体产率。RYU等[24]研究了木质素和聚丙烯在RM催化下的共热解,发现RM进一步提高了裂解效率,且增强了含氧中间体 (例如呋喃) 和烯烃之间的Diels-Alder反应,产生大量芳烃。目前关于RM催化热解生物质与聚合物混合原料方面的研究十分有限,热解过程中生物质和聚合物之间的协同作用和催化机理仍需要深入研究。另外,关于RM催化人造板热解实现协同处理的相关文献十分欠缺。此外,RM在前处理活化 (煅烧) 、热解过程以及循环利用中,主要催化物质Fe基会发生晶相、价态变化。而鲜少有研究者关注RM的成分变化对其催化效果的影响,这对确定RM前处理活化参数、循环利用次数以及通过焙烧还原后进行Fe回收的理论基础十分重要,亟需进一步的研究。
本研究通过热重、TG-FTIR-MS、GC-MS多种手段对RM催化等温和非等温热解进行研究。研究了RM催化热解人造板的机理,并调查了RM添加比例以及RM热解时铁氧化物成分变化对催化效果的影响,并在固定床上研究了RM与炭的复合材料的催化效果以探索RM作为添加剂循环利用的可能性。
拜耳法赤泥催化热解废弃人造板的产物特性分析
Product characteristics analysis of Bayer red mud catalytic pyrolysis of waste wood-based panel
-
摘要: 针对拜耳法赤泥年产量巨大亟需资源化回收、以及由于人造板包含3%~15%聚合物的特性导致传统处理方式污染较大的问题,提出一种利用赤泥原位低温催化热解废弃人造板的处理方式,实现废弃赤泥和人造板的有效消纳。首先在热重反应器上比较了不同添加比例的赤泥对人造板热解的影响,并采用DAEM (distributed activation energy model) 模型计算了传统热解和赤泥催化热解的活化能。热重结果表明:随赤泥添加比例增加,人造板的整体失重增加,而热解平均活化能呈先增加后降低的趋势,推荐赤泥添加比例≤30%。然后通过TG-FTIR-MS联用探究了拜尔法赤泥原位催化人造板的机理,并且关注了热解过程中铁基成分变化对催化机理的影响,结果表明:赤泥中铁氧化合物主相分别为Fe2O3和Fe3O4时,对人造板热解过程的催化效果显著不同,Fe2O3促进了酰胺的提前分解和断裂,且对脱羰基、羧基反应的促进作用更强;Fe3O4能够更显著地促进挥发分中芳香化合物的产生以及高温下CO2、CO的释放。最后在固定床上研究了赤泥焦炭复合材料的催化效果以探索其循环利用的潜力,结果表明,赤泥炭催化效果弱于赤泥,但仍能有效实现脱酸提质焦油,焦油中可燃脂肪烃的含量增加1.8倍。Abstract: In view of the huge annual generation of Bayer red mud to be recovered, as well as the risk of pollutants emission for traditional treatment methods dealing wood-based panel due to its 3%~15% polymer component, a strategy was proposed to utilize low temperature in-situ red mud catalytic pyrolysis of wood-based panel, to realize effective consume of wasted red mud and wood-based panel. Firstly, the effects of different addition ratios of red mud on pyrolysis of wood-based panel were compared on the thermogravimetric reactor, and the activation energies of traditional pyrolysis and catalytic pyrolysis of red mud were calculated using DAEM mode (distributed activation energy model). The TG results showed that with the increasing proportion of red mud, the overall weight loss of wood-based panel increased, while the average activation energy of pyrolysis increased first and then decreased. The recommended proportion of red mud was below 30%. TG-FTIR-MS was used to investigate the in-situ catalytic mechanism of Bayer red mud during the pyrolysis process. And the influence of component change of iron-based on pyrolysis mechanism was especially focused. Results indicated that when the main phases of iron oxides were Fe2O3 and Fe3O4 respectively, their catalytic effects on the pyrolysis of wood-based panel were significantly different. Fe2O3 promoted the early decomposition and cleavage of amides, and had a stronger promoting effect on decarbonylation and decarboxylation reactions. Fe3O4 could significantly promote the production of aromatic compound in volatile matter and the release of CO2 and CO at high temperature. Finally, the catalytic effect of red mud char composite materials was studied on a fixed bed to explore the possibility of cyclic utilization. The results showed that the catalytic effect of red mud char was weaker than red mud, but it still achieved an effective deacidification and upgrading of tar, and the content of combustible aliphatic hydrocarbons in tar increased 1.8 times.
-
Key words:
- red mud /
- catalytic pyrolysis /
- wood-based panel /
- TG-FTIR /
- dynamics
-
表 1 人造板的工业和元素分析
Table 1. Proximate and ultimate analysis of wood-based panel
% (质量分数) 工业分析 (空气干燥基) 元素分析 水分M 灰分A 挥发分V 固定碳FC C H O N S 9.50 1.73 73.03 15.74 44.86 5.99 43.87 5.18 0.10 表 2 拜尔RM的XRF元素分析结果
Table 2. XRF elemental analysis result of Bayer RM
% (质量分数) Fe2O3 Al2O3 CaO SiO2 TiO2 Na2O 其他 44.06 18.04 2.39 15.07 4.79 4.10 11.56 表 3 热重曲线图的相关参数
Table 3. Relevant parameters of thermogravimetric curve
升温速率/
( ℃·min−1)样品 最大失重峰峰值所在温度/ ℃ 最大失重速率/ (10−2·%· ℃−1) 总失重/% 1 2 3 4 1 2 3 4 5 R 67.17 325.57 639.17 — 3.40 89.86 1.99 0.00 18.11 0.1RMR 62.65 318.65 649.85 794.65 5.10 96.18 2.29 2.95 13.19 0.2RMR 60.95 318.55 654.55 824.15 5.48 89.88 2.57 4.69 11.32 0.3RMR 59.92 319.12 656.72 816.72 4.27 96.72 3.01 5.54 6.26 0.4RMR 80.03 320.83 636.83 760.03 9.64 111.73 2.19 6.29 1.21 10 R 68.81 336.01 659.21 — 3.62 88.77 1.75 0.00 18.93 0.1RMR 66.83 331.63 668.43 806.03 4.48 91.52 2.13 2.28 18.47 0.2RMR 69.54 331.14 675.14 805.54 4.60 96.90 2.53 3.70 11.15 0.3RMR 65.93 326.73 665.93 799.53 4.85 104.92 2.47 4.14 1.43 0.4RMR 87.76 329.36 660.56 777.36 8.24 100.94 2.41 6.25 4.56 20 R 78.83 346.03 680.43 — 3.90 85.71 1.96 0.00 21.05 0.1RMR 73.07 339.47 685.07 792.27 4.72 88.61 2.15 2.20 18.71 0.2RMR 76.99 341.79 686.59 831.39 4.50 86.48 3.10 5.20 8.34 0.3RMR 73.65 341.65 684.85 807.25 4.40 103.79 2.64 4.50 4.83 0.4RMR 87.52 340.32 674.72 784.32 13.00 106.80 2.29 5.13 0.33 -
[1] 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. doi: 10.16085/j.issn.1000-6613.2017-0843 [2] 刘昌俊, 李文成, 周晓燕, 等. 烧结法赤泥基本特性的研究[J]. 环境工程学报, 2009, 3(4): 739-742. [3] YAN X Y, LI Y J, SUN C Y, et al. Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material[J]. Applied Energy, 2022, 312: 118737. doi: 10.1016/j.apenergy.2022.118737 [4] ZHAO A M, LV J W, CHEN Q L, et al. Spirit-based distillers’ grains and red mud synergistically catalyse the steam gasification of anthracite to produce hydrogen-rich synthesis gas[J]. International Journal of Hydrogen Energy, 2021, 46(1): 314-323. doi: 10.1016/j.ijhydene.2020.10.027 [5] WANG Y M, LI Y, WANG G J, et al. Effect of Fe components in red mud on catalytic pyrolysis of low rank coal[J]. Journal of the Energy Institute, 2022, 100: 1-9. doi: 10.1016/j.joei.2021.10.005 [6] DUAN J Y, WU Y K, ZHENG J, et al. Enhancing catalytic performance of red mud for palmitic acid hydrodeoxygenation by acid pretreatment-induced structural modification[J]. Fuel Processing Technology, 2023, 248: 107839. doi: 10.1016/j.fuproc.2023.107839 [7] LY H V, PARK J W, KIM S S, et al. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil[J]. Renewable Energy, 2020, 149: 1434-1445. doi: 10.1016/j.renene.2019.10.141 [8] SHAO S S, ZHANG P F, XIANG X L, et al. Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides[J]. Renewable Energy, 2022, 190: 11-18. doi: 10.1016/j.renene.2022.02.105 [9] WEBER J, THOMPSON A, WILMOTH J, et al. Effect of metal oxide redox state in red mud catalysts on ketonization of fast pyrolysis oil derived oxygenates[J]. Applied Catalysis B:Environmental, 2019, 241: 430-441. doi: 10.1016/j.apcatb.2018.08.061 [10] SHAO S S, CAO Y, YE Z A, et al. Enhanced selective production of aldehydes and ketones by catalytic upgrading of pyrolysis vapor from holocellulose over red mud-based composite catalysts[J]. Fuel, 2024, 355: 129367. doi: 10.1016/j.fuel.2023.129367 [11] WANG J X, ZHANG S P, XU D, et al. Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking[J]. Fuel, 2022, 323: 124278. doi: 10.1016/j.fuel.2022.124278 [12] VESES A. , AZNAR M. , LOPEZ J. M. , et al. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials[J]. Fuel, 2015, 141: 17-22. [13] WANG S Q, LI Z H, BAI X Y, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. doi: 10.1016/j.biortech.2019.01.037 [14] WANG L H, YI W M, ZHANG A D, et al. Catalytic Fast Pyrolysis of Corn Stalk for Phenols Production With Solid Catalysts[J]. Frontiers in Energy Research, 2019, 7:86. [15] LI X H, SUN J Y, ZHANG H C, et al. Enhanced production of monocyclic aromatic hydrocarbons by catalytic pyrolysis of rape straw in a cascade dual-catalyst system of modified red mud and HZSM-5[J]. Fuel Processing Technology, 2022, 236: 107381. doi: 10.1016/j.fuproc.2022.107381 [16] LI X H, HUANG Z H, SHAO S S, et al. Catalytic pyrolysis of biomass to produce aromatic hydrocarbons in a cascade dual-catalyst system: Design of red mud based catalyst assisted by the analysis of variance[J]. Journal of Cleaner Production, 2023, 404: 136849. doi: 10.1016/j.jclepro.2023.136849 [17] YANG X Y, ZHANG J P, ZHENG J, et al. In-situ and ex-situ catalytic pyrolysis of cellulose to produce furans over red mud-supported transition metal catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105830. doi: 10.1016/j.jaap.2022.105830 [18] WANG L H, SI B C, HAN X, et al. Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis[J]. Industrial Crops and Products, 2022, 184: 114973. doi: 10.1016/j.indcrop.2022.114973 [19] LEI M, ZHANG Y C, HONG D K, et al. Characterization of nitrogen and sulfur migration during pressurized coal pyrolysis and oxy-fuel combustion[J]. Fuel, 2022, 317: 123484. doi: 10.1016/j.fuel.2022.123484 [20] CHEN G Y, LI J T, LI K, et al. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge[J]. Fuel, 2020, 273: 117772. doi: 10.1016/j.fuel.2020.117772 [21] CHEN H Y, SHAN R, ZHAO F X, et al. A review on the NOx precursors release during biomass pyrolysis[J]. Chemical Engineering Journal, 2023, 451: 138979. doi: 10.1016/j.cej.2022.138979 [22] ZHAN H, ZHUANG X Z, SONG Y P, et al. A review on evolution of nitrogen-containing species during selective pyrolysis of waste wood-based panels[J]. Fuel, 2019, 253: 1214-1228. doi: 10.1016/j.fuel.2019.05.122 [23] AHMED M, BATALHA N, QIU T F, et al. Red-mud based porous nanocatalysts for valorisation of municipal solid waste[J]. Journal of Hazardous Materials, 2020, 396: 122711. doi: 10.1016/j.jhazmat.2020.122711 [24] RYU S M, LEE H W, KIM Y M, et al. Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor[J]. Applied Surface Science, 2020, 511: 145521. doi: 10.1016/j.apsusc.2020.145521 [25] LIU X G, LI B Q, MIURA K. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model[J]. Fuel Processing Technology, 2001, 69(1): 1-12. doi: 10.1016/S0378-3820(00)00113-2 [26] 张吉元, 柳丹丹, 郭晓方, 等. 赤泥-煤矸石协同还原焙烧回收Fe、 Al有价元素[J]. 环境工程学报, 2021(10): 3306-3315. [27] CAO J L, YAN Z L, DENG Q F, et al. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5747-5755. doi: 10.1016/j.ijhydene.2014.01.169 [28] WANG S Q, LI Z H, BAI X Y, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 8-17. doi: 10.1016/j.jaap.2018.10.024 [29] LI X Y, CHEN J, LU C M, et al. Performance of Mo modified γ-Fe2O3 catalyst for selective catalytic reduction of NOx with ammonia: Presence of arsenic in flue gas[J]. Fuel, 2021, 294: 120552. doi: 10.1016/j.fuel.2021.120552 [30] XU R S, DAI B W, WANG W, et al. Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking[J]. Fuel Processing Technology, 2018, 173: 11-20. doi: 10.1016/j.fuproc.2018.01.006 [31] ZHAO C X, LI B Q, LIU J N, et al. Intrinsic Electrocatalytic Activity Regulation of M–N–C Single-Atom Catalysts for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2021, 60(9): 4448-4463. doi: 10.1002/anie.202003917 [32] 何立平, 杨迎春, 徐成华, 等. Fe/活性炭多相类Fenton法湿式氧化罗丹明B废水的研究[J]. 环境工程学报, 2009, 3(8): 1433-1437. [33] Wang S. , Zhao C. , Shan R. , et al. A novel peat biochar supported catalyst for the transesterification reaction[J]. Energy Conversion and Management, 2017, 139: 89-96. [34] ZENG Y X, ALMATRAFI E, XIA W, et al. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes[J]. Coordination Chemistry Reviews, 2023, 475: 214874. doi: 10.1016/j.ccr.2022.214874