[1] 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. doi: 10.16085/j.issn.1000-6613.2017-0843
[2] 刘昌俊, 李文成, 周晓燕, 等. 烧结法赤泥基本特性的研究[J]. 环境工程学报, 2009, 3(4): 739-742.
[3] YAN X Y, LI Y J, SUN C Y, et al. Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material[J]. Applied Energy, 2022, 312: 118737. doi: 10.1016/j.apenergy.2022.118737
[4] ZHAO A M, LV J W, CHEN Q L, et al. Spirit-based distillers’ grains and red mud synergistically catalyse the steam gasification of anthracite to produce hydrogen-rich synthesis gas[J]. International Journal of Hydrogen Energy, 2021, 46(1): 314-323. doi: 10.1016/j.ijhydene.2020.10.027
[5] WANG Y M, LI Y, WANG G J, et al. Effect of Fe components in red mud on catalytic pyrolysis of low rank coal[J]. Journal of the Energy Institute, 2022, 100: 1-9. doi: 10.1016/j.joei.2021.10.005
[6] DUAN J Y, WU Y K, ZHENG J, et al. Enhancing catalytic performance of red mud for palmitic acid hydrodeoxygenation by acid pretreatment-induced structural modification[J]. Fuel Processing Technology, 2023, 248: 107839. doi: 10.1016/j.fuproc.2023.107839
[7] LY H V, PARK J W, KIM S S, et al. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil[J]. Renewable Energy, 2020, 149: 1434-1445. doi: 10.1016/j.renene.2019.10.141
[8] SHAO S S, ZHANG P F, XIANG X L, et al. Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides[J]. Renewable Energy, 2022, 190: 11-18. doi: 10.1016/j.renene.2022.02.105
[9] WEBER J, THOMPSON A, WILMOTH J, et al. Effect of metal oxide redox state in red mud catalysts on ketonization of fast pyrolysis oil derived oxygenates[J]. Applied Catalysis B:Environmental, 2019, 241: 430-441. doi: 10.1016/j.apcatb.2018.08.061
[10] SHAO S S, CAO Y, YE Z A, et al. Enhanced selective production of aldehydes and ketones by catalytic upgrading of pyrolysis vapor from holocellulose over red mud-based composite catalysts[J]. Fuel, 2024, 355: 129367. doi: 10.1016/j.fuel.2023.129367
[11] WANG J X, ZHANG S P, XU D, et al. Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking[J]. Fuel, 2022, 323: 124278. doi: 10.1016/j.fuel.2022.124278
[12] VESES A. , AZNAR M. , LOPEZ J. M. , et al. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials[J]. Fuel, 2015, 141: 17-22.
[13] WANG S Q, LI Z H, BAI X Y, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. doi: 10.1016/j.biortech.2019.01.037
[14] WANG L H, YI W M, ZHANG A D, et al. Catalytic Fast Pyrolysis of Corn Stalk for Phenols Production With Solid Catalysts[J]. Frontiers in Energy Research, 2019, 7:86.
[15] LI X H, SUN J Y, ZHANG H C, et al. Enhanced production of monocyclic aromatic hydrocarbons by catalytic pyrolysis of rape straw in a cascade dual-catalyst system of modified red mud and HZSM-5[J]. Fuel Processing Technology, 2022, 236: 107381. doi: 10.1016/j.fuproc.2022.107381
[16] LI X H, HUANG Z H, SHAO S S, et al. Catalytic pyrolysis of biomass to produce aromatic hydrocarbons in a cascade dual-catalyst system: Design of red mud based catalyst assisted by the analysis of variance[J]. Journal of Cleaner Production, 2023, 404: 136849. doi: 10.1016/j.jclepro.2023.136849
[17] YANG X Y, ZHANG J P, ZHENG J, et al. In-situ and ex-situ catalytic pyrolysis of cellulose to produce furans over red mud-supported transition metal catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105830. doi: 10.1016/j.jaap.2022.105830
[18] WANG L H, SI B C, HAN X, et al. Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis[J]. Industrial Crops and Products, 2022, 184: 114973. doi: 10.1016/j.indcrop.2022.114973
[19] LEI M, ZHANG Y C, HONG D K, et al. Characterization of nitrogen and sulfur migration during pressurized coal pyrolysis and oxy-fuel combustion[J]. Fuel, 2022, 317: 123484. doi: 10.1016/j.fuel.2022.123484
[20] CHEN G Y, LI J T, LI K, et al. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge[J]. Fuel, 2020, 273: 117772. doi: 10.1016/j.fuel.2020.117772
[21] CHEN H Y, SHAN R, ZHAO F X, et al. A review on the NOx precursors release during biomass pyrolysis[J]. Chemical Engineering Journal, 2023, 451: 138979. doi: 10.1016/j.cej.2022.138979
[22] ZHAN H, ZHUANG X Z, SONG Y P, et al. A review on evolution of nitrogen-containing species during selective pyrolysis of waste wood-based panels[J]. Fuel, 2019, 253: 1214-1228. doi: 10.1016/j.fuel.2019.05.122
[23] AHMED M, BATALHA N, QIU T F, et al. Red-mud based porous nanocatalysts for valorisation of municipal solid waste[J]. Journal of Hazardous Materials, 2020, 396: 122711. doi: 10.1016/j.jhazmat.2020.122711
[24] RYU S M, LEE H W, KIM Y M, et al. Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor[J]. Applied Surface Science, 2020, 511: 145521. doi: 10.1016/j.apsusc.2020.145521
[25] LIU X G, LI B Q, MIURA K. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model[J]. Fuel Processing Technology, 2001, 69(1): 1-12. doi: 10.1016/S0378-3820(00)00113-2
[26] 张吉元, 柳丹丹, 郭晓方, 等. 赤泥-煤矸石协同还原焙烧回收Fe、 Al有价元素[J]. 环境工程学报, 2021(10): 3306-3315.
[27] CAO J L, YAN Z L, DENG Q F, et al. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5747-5755. doi: 10.1016/j.ijhydene.2014.01.169
[28] WANG S Q, LI Z H, BAI X Y, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 8-17. doi: 10.1016/j.jaap.2018.10.024
[29] LI X Y, CHEN J, LU C M, et al. Performance of Mo modified γ-Fe2O3 catalyst for selective catalytic reduction of NOx with ammonia: Presence of arsenic in flue gas[J]. Fuel, 2021, 294: 120552. doi: 10.1016/j.fuel.2021.120552
[30] XU R S, DAI B W, WANG W, et al. Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking[J]. Fuel Processing Technology, 2018, 173: 11-20. doi: 10.1016/j.fuproc.2018.01.006
[31] ZHAO C X, LI B Q, LIU J N, et al. Intrinsic Electrocatalytic Activity Regulation of M–N–C Single-Atom Catalysts for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2021, 60(9): 4448-4463. doi: 10.1002/anie.202003917
[32] 何立平, 杨迎春, 徐成华, 等. Fe/活性炭多相类Fenton法湿式氧化罗丹明B废水的研究[J]. 环境工程学报, 2009, 3(8): 1433-1437.
[33] Wang S. , Zhao C. , Shan R. , et al. A novel peat biochar supported catalyst for the transesterification reaction[J]. Energy Conversion and Management, 2017, 139: 89-96.
[34] ZENG Y X, ALMATRAFI E, XIA W, et al. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes[J]. Coordination Chemistry Reviews, 2023, 475: 214874. doi: 10.1016/j.ccr.2022.214874