[1] |
XU F, JIANG L, DAN Z, et al. Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China — A case study[J]. Hydrometallurgy, 2014, 149: 12-22. doi: 10.1016/j.hydromet.2014.05.002
|
[2] |
YANG T, XUE Y, LIU X, et al. Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review[J]. Process Safety and Environmental Protection, 2022, 157: 509-526. doi: 10.1016/j.psep.2021.10.031
|
[3] |
HE D, SHU J, WANG R, et al. A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse[J]. Journal of Hazardous Materials, 2021, 418: 126235. doi: 10.1016/j.jhazmat.2021.126235
|
[4] |
DU B, ZHOU C, LI X, et al. A kinetic study of Mn(II) precipitation of leached aqueous solution from electrolytic manganese residues[J]. Toxicological & Environmental Chemistry, 2015, 97(3-4): 349-357.
|
[5] |
BISWAL A, CHANDRA TRIPATHY B, SANJAY K, et al. Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry[J]. RSC Advances, 2015, 5(72): 58255-58283. doi: 10.1039/C5RA05892A
|
[6] |
ZHANG W, CHU Y C. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide[J]. Hydrometallurgy, 2007, 89(3-4): 137-159. doi: 10.1016/j.hydromet.2007.08.010
|
[7] |
CHANG J, SRINIVASAKANNAN C, SUN X, et al. Optimization of microwave-assisted manganese leaching from electrolyte manganese residue[J]. Green Processing and Synthesis, 2019, 9(1): 2-12. doi: 10.1515/gps-2020-0001
|
[8] |
SHU J, LIU R, LIU Z, et al. Leaching of manganese from electrolytic manganese residue by electro-reduction[J]. Environmental Technology, 2017, 38(16): 2077-2084. doi: 10.1080/09593330.2016.1245789
|
[9] |
ZHANG Y, LIU X, XU Y, et al. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue[J]. Journal of Cleaner Production, 2019, 232: 980-992. doi: 10.1016/j.jclepro.2019.05.352
|
[10] |
WANG D, WANG Q, XUE J. Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel application as a cementitious material[J]. Resources, Conservation and Recycling, 2020, 154: 104645. doi: 10.1016/j.resconrec.2019.104645
|
[11] |
GUO Z, XU J, XU Z, et al. Performance of cement-based materials containing calcined coal gangue with different calcination regimes[J]. Journal of Building Engineering, 2022, 56: 104821. doi: 10.1016/j.jobe.2022.104821
|
[12] |
REN C, WANG W, HUA D, et al. Preparation and Properties of a Sulphoaluminate Magnesium-Potassium Phosphate Green Cementitious Composite Material from Industrial Solid Wastes[J]. Materials, 2021, 14(23): 7340. doi: 10.3390/ma14237340
|
[13] |
WU W, CHEN Z, HUANG Y, et al. Red mud for the efficient adsorption of U(VI) from aqueous solution: Influence of calcination on performance and mechanism[J]. Journal of Hazardous Materials, 2021, 409: 124925. doi: 10.1016/j.jhazmat.2020.124925
|
[14] |
LIU X ming, LI Y, ZHANG L ling, et al. Phase transitions relating to the pozzolanic activity of electrolytic manganese residue during calcination[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(1): 105-110. doi: 10.1007/s12204-013-1372-7
|
[15] |
WANG F, LONG G, BAI M, et al. Application of electrolytic manganese residues in cement products through pozzolanic activity motivation and calcination[J]. Journal of Cleaner Production, 2022, 338: 130629. doi: 10.1016/j.jclepro.2022.130629
|
[16] |
HOU P kun, QIAN J shi, WANG Z, et al. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue[J]. Cement and Concrete Composites, 2012, 34(2): 248-254. doi: 10.1016/j.cemconcomp.2011.10.003
|
[17] |
TOKALIOĞLU Ş, KARTAL Ş. Bioavailability of Soil‐Extractable Metals to Tea Plant by BCR Sequential Extraction Procedure[J]. Instrumentation Science & Technology, 2004, 32(4): 387-400.
|
[18] |
NEMATI K, BAKAR N K A, ABAS Mhd R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011: S0304389411006789.
|
[19] |
JAMALI M K, KAZI T G, AFRIDI H I, et al. Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J]. Environmental Letters, 2007, 42(5): 649-659.
|
[20] |
TOKALIOLU E, KARTAL E, ELI L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure[J]. Analytica Chimica Acta, 2000, 413(1-2): 33-40. doi: 10.1016/S0003-2670(00)00726-1
|
[21] |
聂霄悍, 雷学文, 刘磊, 等. 堆存陈化对电解锰渣重金属赋存形态及环境风险演化的影响[J/OL]. 中国环境科学.https://doi.org/10.19674/j.cnki.issn1000-6923.20230823.007.
|
[22] |
姜媛媛, 王彦, 段文焱, 等. 市政污泥热解过程中重金属迁移特性及环境效应评估[J]. 环境科学, 2021, 42(6): 2966-2974. doi: 10.13227/j.hjkx.202009078
|
[23] |
中华人民共和国环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010.
|
[24] |
CHEN M, WEI J, ZHANG R, et al. Analysis of basic physical and chemical characteristics of manganese slag before and after solidification and its feasibility as highway slope[J]. Materials, 2021, 14(19): 5530. doi: 10.3390/ma14195530
|
[25] |
KOLAITIS D I, FOUNTI M A. Development of a solid reaction kinetics gypsum dehydration model appropriate for CFD simulation of gypsum plasterboard wall assemblies exposed to fire[J]. Fire Safety Journal, 2013, 58: 151-159. doi: 10.1016/j.firesaf.2013.01.029
|
[26] |
HAN Y, CUI X, LV X, et al. Preparation and characterization of geopolymers based on a phosphoric-acid-activated electrolytic manganese dioxide residue[J]. Journal of Cleaner Production, 2018, 205: 488-498. doi: 10.1016/j.jclepro.2018.09.141
|
[27] |
ZHAN X, WANG L, WANG L, et al. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment[J]. Waste Management, 2019, 98: 135-143. doi: 10.1016/j.wasman.2019.08.024
|
[28] |
DUAN N, CUI K, ZHU C, et al. Study on phase evolution and promoting the pozzolanic activity of electrolytic manganese residue during calcination[J]. Environmental Research, 2023, 227: 115774. doi: 10.1016/j.envres.2023.115774
|
[29] |
SHU J, LIU R, LIU Z, et al. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of Hazardous Materials, 2016, 317: 267-274. doi: 10.1016/j.jhazmat.2016.05.076
|
[30] |
SHU J, LI B, CHEN M, et al. An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material[J]. Chemosphere, 2020, 253: 126896. doi: 10.1016/j.chemosphere.2020.126896
|
[31] |
XU L J, WANG X M, CHEN H C, et al. Mn forms and environmental impact of electrolytic manganese residue[J]. Advanced Materials Research, 2011, 183-185: 570-574. doi: 10.4028/www.scientific.net/AMR.183-185.570
|