-
进口废塑料在缓解原材料压力的同时,给我国生态环境和人们生命健康带来很大威胁。为了应对这一问题,我国于2017年颁布了《禁止洋垃圾入境推进固体废物进口管理制度改革实施方案》,从而使我国从最大废塑料进口国变为最大再生塑料颗粒进口国[1-2]。塑料生产过程中,Cr、Cd、Hg、Pb、Mn和Cu等重金属随稳定剂或无机颜料等添加剂进入产品,从而对使用者的健康构成潜在威胁[3-9]。尽管废塑料鉴别技术不断更新并且我国加大了对废塑料进口的限制力度[10-13],但我国海关仍多次在进口再生塑料颗粒中发现夹杂废塑料的情况[14-15],这意味着废塑料潜在风险并未完全消除。有文献曾报道国内一次性塑料食品容器中多种金属对人体存在不可忽略的健康风险,其中可能就存在违规生产的再生塑料食品接触产品[16-18]。此外,一些欧美国家目前已允许再生塑料颗粒用于制造食品接触产品,并有可能使再生塑料以产品形式直接进入中国人民的日常生活[19-21]。掺加再生塑料颗粒的食品接触产品在日常生活中可能无法完全避免,因此研究进口再生塑料颗粒中重金属在不同食物液中的浸出特性、并评估长期暴露可能带来的健康风险对其后续加工与利用具有重要意义。
再生塑料颗粒用于制造食品接触产品的人体健康风险评估在我国暂无成型评估框架,但在欧美等国家或地区相对较成熟,其中美国食品局 (US FDA) 提出的评估框架已得到广泛应用[22-24]。HUANG等 [25]引入FDA框架,采用传统危害商(HQ)和危害指数(HI)对再生塑料分类工厂内工人的健康风险进行评估,提出Cr和As在皮肤暴露下致癌风险分别超过EPA建议的不可接受水平38和2倍,存在严重致癌风险。张杰聪等[26]采用类似的评估方法,对婴幼儿经口摄入再生与非再生塑料儿童玩具中重金属的健康风险进行评估,发现再生PP玩具中多种重金属对婴儿的危害指数均高于非再生PP玩具。美国卫生与公众服务部有毒物质和疾病登记署(ATSDR)发布的《联合毒性行为评估指导手册》提出TTD法,考虑到多种重金属的联合毒性[27]。ZOU等[28]引入TTD修正的HI评估中药中重金属的潜在健康风险,发现传统评价方法下健康风险处于可接受水平,而TTD修饰后的HI显示多个靶器官存在不可接受的健康风险。上述研究主要采用传统HQ和 HI评估重金属的人体健康风险,然而实际情况下可能存在多种污染物混合暴露和相互作用,导致在一定程度上可能低估或者高估其健康风险[29-32]。为更准确地评估混合污染物暴露下的健康风险,故采用TTD修饰的HI方法进行风险评估。
基于此,本研究通过检测5种典型进口再生塑料颗粒中重金属在食物模拟液中的浸出浓度,采用传统HI和TTD法估算其经口摄入的健康风险水平,以期为进口再生塑料颗粒风险管理与利用提供一定科学依据。
进口再生塑料颗粒重金属浸出特征及健康风险评价
Heavy metals leaching characteristics and health risk assessment of imported recycled plastic particles
-
摘要: 为了评价进口再生塑料颗粒中主要重金属经口摄入的潜在健康风险,选取了5类典型进口再生塑料颗粒,基于美国环保署(US EPA)人体健康风险评估框架,通过检测其在食物模拟液中Hg、Pb、Cr、Cd、Mn和Cu的浸出浓度,对其饮食摄入途径下的致癌/非致癌风险进行量化评价,并采用靶器官毒性剂量(TTD)法对非致癌风险指数进行修正。结果表明,参照我国饮用水标准,Hg、Pb、Cr、Cd和Mn浸出浓度超标倍数分别高达1 243.04、50.06、38.27、3.27和2.96倍,而Cu未超标,总体上存在严重健康风险。致癌风险结果显示,在所有模拟场景下,5种进口再生塑料颗粒中重金属致癌风险指数平均超过可能致癌水平上限70.28倍。非致癌风险结果显示,在所有模拟场景下,5种进口再生塑料颗粒中重金属传统非致癌风险指数和靶器官毒性剂量修正的非致癌风险指数分别平均超过最高上限15.26倍和23.71倍,其中肠胃道、血液、肾脏和神经系统存在不可接受非致癌风险,睾丸、心血管和肝脏不存在非致癌风险。这表明进口再生塑料颗粒所带来潜在健康风险仍需持续关注。Abstract: To assess the potential health risks of major heavy metals from orally ingested imported recycled plastic particles, five typical imported pellets of recycled plastic were selected. Based on the US Environmental Protection Agency (US EPA) human health risk assessment framework, the leaching concentrations of Hg, Pb, Cr, Cd, Mn, and Cu in food simulant liquids were measured to quantitatively evaluate the carcinogenic/non-carcinogenic risks under dietary exposure pathways. The Target Organ Toxicity Dose (TTD) method was used to adjust the non-carcinogenic risk index. The results showed that compared to the drinking water standards in China, the exceedance multiples of leaching concentrations for Hg, Pb, Cr, Cd, and Mn were as high as 1 243.04、50.06、 38.27、 3.27 and 2.96 times, respectively, while Cu was within the limits. Overall, there were significant health risks. The carcinogenic risk results indicated that the average carcinogenic risk indices of heavy metals in the five imported pellets of recycled plastic exceeded the highest upper limit by 70.28 times in all simulation scenarios. The non-carcinogenic risk results showed that the average traditional non-carcinogenic risk indices and TTD non-carcinogenic risk indices in all simulation scenarios exceeded the highest upper limit by 15.26 and 23.71 times, respectively. Unacceptable non-carcinogenic risks were observed in the gastrointestinal tract, blood, kidneys, and nervous system, while no non-carcinogenic risks were found in the testes, cardiovascular system, and liver. This indicates that continuous attention should be paid to the potential health risks posed by imported recycled plastic particles.
-
靶器官 Cr/
(mg·kg−1·d−1)Cd/
(mg·kg−1·d−1)Mn/
(mg·kg−1·d−1)Cu/
(mg·kg−1·d−1)Pb/
(ug·dL−1)Hg/
(mg·kg−1·d−1)胃肠道 0.000 9 — — — — — 神经系统 0.010 0 0.000 2 0.070 0 — 10.000 0 — 肾脏 0.010 0 0.000 2 — — 34.000 0 0.002 0 血液 0.003 0 0.000 8 — — 10.000 0 — 睾丸 0.050 0 0.003 0 — — 40.000 0 — 心血管 — 0.005 0 — — 10.000 0 — 肝脏 — — — 0.140 0 — — -
[1] NIKIEMA J, ASIEDU Z. A review of the cost and effectiveness of solutions to address plastic pollution[J]. Environmental Science and Pollution Research, 2022, 29(17): 24547-24573. doi: 10.1007/s11356-021-18038-5 [2] JNR A K L, GALPIN R, MANJULA S, et al. Reuse of waste plastics in developing countries: properties of waste plastic-sand composites[J]. Waste and Biomass Valorization, 2022, 13(9): 3821-3834. doi: 10.1007/s12649-022-01708-x [3] HAHLADAKIS J N, VELIS C A, WEBER R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. doi: 10.1016/j.jhazmat.2017.10.014 [4] THOMPSON C M, AARDEMA M J, HEINTZ M M, et al. A review of mammalian in vivo genotoxicity of hexavalent chromium: implications for oral carcinogenicity risk assessment[J]. Critical Reviews in Toxicology, 2021, 51(10): 820-849. doi: 10.1080/10408444.2021.2000934 [5] GODT J, SCHEIDIG F, GROSSE-SIESTRUP C, et al. The toxicity of cadmium and resulting hazards for human health[J]. Journal of Occupational Medicine and Toxicology, 2006, 1(1): 1-6. doi: 10.1186/1745-6673-1-1 [6] BHARDWAJ V, NURCHI V M, SAHOO S K. Mercury toxicity and detection using chromo-fluorogenic chemosensors[J]. Pharmaceuticals, 2021, 14(2): 123. doi: 10.3390/ph14020123 [7] KUMAR A, KUMAR A, M M S C P, et al. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 1-33. [8] CHARKIEWICZ A E, BACKSTRAND J R. Lead toxicity and pollution in Poland[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2179. doi: 10.3390/ijerph17072179 [9] ZORODDU M A, AASETH J, CRISPONI G, et al. The essential metals for humans: a brief overview[J]. Journal of Inorganic Biochemistry, 2019, 195: 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 [10] WANG P S, MA H, XI X H, et al. Plastic spectral interference in the biological characterization by Raman or SERS spectroscopy[J]. Journal of Raman Spectroscopy, 2023, 54(6): 573-579. doi: 10.1002/jrs.6517 [11] NGUYEN V T, LINH T T T, VO T K, et al. Analytical techniques for determination of heavy metal migration from different types of locally made plastic food packaging materials using ICP-MS[J]. Food Science & Nutrition, 2023, 11(7): 4030-4037. [12] STANGENBERG F, ÅGREN S, KARLSSON S. Quality assessments of recycled plastics by spectroscopy and chromatography[J]. Chromatographia, 2004, 59(1): 101-106. [13] 章楚加, 仲新建. 关于走私废物罪罚金刑数额裁量之思考[N]. 人民法院报, 2014-08-06. [14] 保持高压态势 拒“洋垃圾”于国门之外——海关总署南京海关缉私局打击“洋垃圾”走私专项行动组[J]. 中国生态文明, 2019(3): 19-20. [15] 沪海关清退“洋垃圾”创新高[J]. 绿色包装, 2019(6): 12. [16] ZENG X, LIU D, WU Y, et al. Heavy metal risk of disposable food containers on human health[J]. Ecotoxicology and Environmental Safety, 2023, 255: 114797. doi: 10.1016/j.ecoenv.2023.114797 [17] TANG Z, LIU M, YI L, et al. Source apportionment and health risk assessment of heavy metals in eastern Guangdong municipal solid waste[J]. Applied Sciences-Basel, 2019, 9(22): 4755. doi: 10.3390/app9224755 [18] JIN Q, GAO H, YUE B, et al. Heavy metal content of rural living solid waste and related source and distribution analysis[J]. Huanjing Kexue, 2018, 39(9): 4385-4392. [19] SILANO V, BAVIERA J M B, BOLOGNESI C, et al. Safety assessment of the process 'RecyPET Hungaria', based on RecyPET Hungaria technology, used to recycle post-consumer PET into food contact materials[J]. Efsa Journal, 2018, 16(11): e05481. [20] STEIMEL K G, HWANG R, DINH D, et al. Evaluation of chemicals leached from PET and recycled PET containers into beverages[J]. Reviews on Environmental Health, 2022.https://doi.org/10.1515/reveh-2022-0183. [21] DEDIEU I, AOUF C, GAUCEL S, et al. Recycled poly(hydroxybutyrate-co-valerate) as food packaging: effect of multiple melt processing on packaging performance and food contact suitability[J]. Journal of Polymers and the Environment, 2023, 31(3): 1019-1028. doi: 10.1007/s10924-022-02600-4 [22] U. S. Environmental Protection Agency. Office of Food Additive Safety. Use of Recycled Plastics in Food Packaging (Chemistry Considerations): Guidance for Industry[EB/OL]. [2023-06-07].https://www.fda.gov/media/150792/download. pdf, 2021. [23] EFSA PANEL ON FOOD CONTACT MATERIALS, ENZYMES, FLAVOURINGS AND PROCESSING AIDS. Scientific Opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food[J]. EFSA Journal, 2011, 9(7): 2184. [24] YE B L. Research on plastic waste treatment [C]//2020 International Conference of Recent Trends in Environmental Sustainability and Green Technologies. Ottawa Canada, 2020: 8. [25] HUANG G Z, XIE J Y, LI T, et al. Worker health risk of heavy metals in pellets of recycled plastic: a skin exposure model[J]. Int Arch Occup Environ Health, 2021, 94(7): 1581-1589. doi: 10.1007/s00420-021-01727-6 [26] 张杰聪, 温云铎, 吴晓丹, 等. 儿童玩具中重金属污染及健康风险评价[J]. 生态毒理学报, 2022, 17(4): 345-353. [27] U. S. Department of Health and Human Services Public Health Service, Agency for Toxic Substances and Disease Registry Division of Toxicology. Guidance manual for the assessment of joint toxic action of chemical mixtures[EB/OL]. [2023-06-07].https://stacks.cdc.gov/view/cdc/6935, 2004. [28] ZUO T T, JIN H Y, CHEN A Z, et al. Novel integrated tiered cumulative risk assessment of heavy metals in food homologous traditional chinese medicine based on a real-life-exposure scenario[J]. Frontiers in Pharmacology, 2022, 13: 908986. doi: 10.3389/fphar.2022.908986 [29] WANG Y F, TANG Y Q, LI Z, et al. Joint toxicity of a multi-heavy metal mixture and chemoprevention in sprague dawley rats[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1451. doi: 10.3390/ijerph17041451 [30] WU X Y, COBBINA S J, MAO G H, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment[J]. Environmental Science and Pollution Research, 2016, 23: 8244-8259. doi: 10.1007/s11356-016-6333-x [31] SUN H W, MA D J, CHAO C Y, et al. Lead distribution in blood and organs of mice exposed to lead by vein injection[J]. Environmental Technology, 2009, 30(10): 1051-1057. doi: 10.1080/09593330903055643 [32] DUMKOVA J, VRLIKOVA L, VECERA Z, et al. Inhaled cadmium oxide nanoparticles: their in vivo fate and effect on target organs[J]. International Journal of Molecular Sciences, 2016, 17(6): 874. doi: 10.3390/ijms17060874 [33] Commission of European Union. Directive 82/711/EEC, Laying Down the Basic Rules Nec-essary for Testing Migration of the Constituents of Plastic Materials and Articles Intended to Come into Contact with Foodstuffs[S].https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31982L0711, 1982. [34] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品接触及制品迁移试验通则: GB 31604.1—2015[S]. 北京: 中国标准出版社, 2016. [35] 李宁, 肖海清, 王宏伟, 等. 不同塑料餐具中典型毒害物质的暴露评估[J]. 现代食品科技, 2022, 38(9): 321-332. [36] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则: GB 5009.156—2016[S]. 北京: 中国质检出版社, 2017. [37] 中华人民共和国环境保护部. 固体废物 金属元素的测定 电感耦合等离子体质谱法: HJ766—2015[S]. 北京: 中国环境科学出版社, 2015. [38] 中华人民共和国环境保护部. 固体废物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法: HJ702—2014[S]. 北京: 中国环境科学出版社, 2014. [39] U. S. Environmental Protection Agency. Risk assessment guidance for superfund (RAGS), vol-ume I: human health evaluation manual [EB/OL]. [2023-06-07].https://www.epa.gov/sites/default/files/2015-11/documents/OSWERdirective9285.6-03.pdf, 2004. [40] 李千婷, 海热提, 林爱军, 等. 再生塑料袋包装食品对人体的健康风险评价[J]. 环境科学与技术, 2010, 33(11): 181-185. [41] 段小丽. 中国人群暴露参数手册[M]. 北京: 中国环境出版社, 2013. [42] SHI H H, ZENG M, PENG H X, et al. Health risk assessment of heavy metals in groundwater of hainan island using the monte carlo simulation coupled with the APCS/MLR model[J]. International Journal of Environmental Research and Public Health, 2022, 19(13): 7827. doi: 10.3390/ijerph19137827 [43] U. S. Environmental Protection Agency. Review of Adult Lead Models Evaluation of Models for Assessing Human Health Risks Associated with Lead Exposures at Non-Residential Areas of Superfund and Other Hazardous Waste Sites[EB/OL]. [2023-06-07].https://semspub.epa.gov/work/HQ/174560.pdf, 2001. [44] 中华人民共和国国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB5749—2022[S]. 北京: 中国标准出版社, 2022. [45] 杜斌, 杨睿, 谢续明. 聚对苯二甲酸乙二醇酯水热老化过程中的物理和化学变化[J]. 塑料, 2011, 40(5): 24-27. [46] 麻一明, 吴剑波, 陈宁, 等. 再生ABS材料的热氧老化性能研究[J]. 塑料工业, 2023, 51(4): 117-122. doi: 10.3969/j.issn.1005-5770.2023.04.018 [47] RANJAN V P, JOSEPH A, GOEL S. Microplastics and other harmful substances released from disposable paper cups into hot water[J]. Journal of Hazardous Materials, 2020, 404(Part B): 124118. [48] 彭湘莲, 李忠海, 王利兵, 等. 4种纸塑包装容器中重金属镉的迁移规律研究[J]. 中国食品学报, 2012, 12(9): 73-77. [49] CHENG X, SHI H, ADAMS C D, et al. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments[J]. Environmental Science and Pollution Research, 2010, 17: 1323-1330. doi: 10.1007/s11356-010-0312-4 [50] TUDI M, YANG L S, YU J P, et al. Leaching Characteristics and potential risk of heavy metals from drip irrigation pipes and mulch substrate in agricultural ecosystems[J]. Science of the Total Environment, 2023, 882: 163573. doi: 10.1016/j.scitotenv.2023.163573 [51] SHAMIMA AKTHER E, MUHAMMAD SAIFUL I, JAHID HASAN S, et al. Assessment of heavy metals migrated from food contact plastic packaging: Bangladesh perspective[J]. Heliyon, 2023, 9(9): e19667. doi: 10.1016/j.heliyon.2023.e19667 [52] MAO S H, GU W H, BAI J F, et al. Migration characteristics of heavy metals during simulated use of secondary products made from recycled e-waste plastic[J]. Journal of Environmental Management, 2020, 266: 110577. doi: 10.1016/j.jenvman.2020.110577 [53] 王世玉, 吴文勇, 刘菲, 等. 典型污灌区土壤与作物中重金属健康风险评估[J]. 中国环境科学, 2018, 38(4): 1550-1560. [54] 杨琰琥, 方先斌, 张晓晴, 等. 程潮矿区周边土壤重金属污染风险评价和健康风险评估[J]. 有色金属(冶炼部分), 2023(1): 65-74,87. [55] U. S. Agency for Toxic Substances and Disease Registry. Minimal Risk Levels (MRLs) for Hazardous Substances[EB/OL]. [2023-06-07]. https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx, 2023. [56] U. S. Agency for Toxic Substances and Disease Registry. Interaction Profile for Toxic Substances: Arsenic, Cadmium, Chromium, Lead[EB/OL]. [2023-06-07]. https://www.atsdr.cdc.gov/interactionprofiles/ip04.html, 2004. [57] U. S. Agency for Toxic Substances and Disease Registry. Interaction Profile for Toxic Substances: Lead, Manganese, Zinc, and Copper[EB/OL]. [2023-06-07]. https://www.atsdr.cdc.gov/interactionprofiles/ip06.html, 2004. [58] U. S. Agency for Toxic Substances and Disease Registry. Interaction Profile for Toxic Substances: Chlorpyifos, Lead, Mercury, and Methylmercury[EB/OL]. [2023-06-07]. https://www.atsdr.cdc.gov/interactionprofiles/ip011.html, 2006.