-
我国城镇污水处理厂进水有机物质量浓度普遍偏低,C/N失衡会限制生物脱氮效率,影响污水处理厂的达标排放[1]。为此,污水厂生化处理阶段常需要外源补充大量乙酸钠或甲醇等工业化学品,以提高生物反硝化脱氮效率。在活性污泥碳代谢足迹中,67%的碳源经同化作用转化为剩余污泥 (即二沉池外排污泥) ,剩余23%的碳源经好氧代谢转化为CO2[2-3]。因此,仅有部分外加碳源用于生物反硝化脱氮,外加碳源不可避免造成碳源浪费及碳排放,不符合我国双碳战略目标。调研不同规模污水处理厂发现,碳源费用占药剂成本的70%[4]。因此,减少污水处理过程中碳源投加,同时实现高效脱氮,不仅可以降低污水处理厂的运行成本,也是推进污水处理行业碳减排的重要途径[5]。
剩余污泥厌氧发酵可回收2 825 mg·L−1挥发性脂肪酸 (volatile fatty acid, VFA) ,其中乙酸占比高达40.7%;将富含VFA的发酵上清液作为碳源,以35 L·d−1投量补加至10 m3·d−1的A2/O中试工艺时,脱氮效率仅提高了32%;而继续提高发酵液补加量至200 L·d−1时,脱氮效率提高至75.5%[6],这表明了厌氧发酵上清液作为外加碳源提高污水脱氮的工程可行性。然而,单独的剩余污泥发酵产酸浓度相对较低。为进一步提升剩余污泥厌氧发酵产VFA效能,研究者开始关注利用餐厨垃圾与剩余污泥协同共发酵,以期在实验室层面实现发酵菌群的定向调控,制备出高浓度的乙酸、丙酸、乳酸等有机酸[7-10],作为后续脱氮的优质碳源[11-13]。
为探究餐厨垃圾与剩余污泥联合发酵上清液作为反硝化碳源在实际工程中的应用效果,并评估其节碳效能,本课题组基于昆山市某城镇污水厂的实际工程,构建餐厨垃圾与剩余污泥联合发酵中试装备 (10 t·d−1) ,考察联合发酵产VFA效能,对比探究不同碳源的脱氮效能,分析污水厂年实际运行数据,以期获得发酵液补加与污水厂脱氮效率及节碳效能的关系,为发酵液的资源化工程应用提供参考。
餐厨垃圾与剩余污泥协同发酵提升低C/N污水脱氮效能的中试研究
Pilot study on co-digestion of food waste and waste activated sludge to improve nitrogen removal efficiency of low c/n sewage
-
摘要: 我国城镇污水处理厂进水碳源普遍偏低,严重影响生物脱氮效能。外加碳源会造成大量化学品消耗及碳排放,与双碳战略背道而驰。考察了餐厨垃圾和剩余污泥联合发酵中试装备 (规模10 t·d−1) 制备挥发性脂肪酸 (VFA) 效能,并将生产的VFA发酵液投加至昆山市某城镇污水处理厂,以减少外源乙酸钠碳源投加量,以期探索城市污水与有机固废的协同、高效、低碳处理技术。结果表明:餐厨垃圾与剩余污泥体积比为7∶3时,VFA质量浓度最高,达到54.3 g·L−1 (以COD计) ,乙酸和丙酸质量分数分别为36.5%和22.8%;在批次发酵中试实验中,VFA最高质量浓度达67.5 g·L−1 (以COD计) ,最低质量浓度为42.4 g·L−1 (以COD计) ,平均质量浓度为55.0 g·L−1 (以COD计) ;对比3类碳源的反硝化实验结果,投加乙酸钠组1.5 h脱氮率为86.5%,投加发酵液组4.5 h脱氮率为81.0%,投加餐厨垃圾组仅为69.8%;根据出水总氮预警阈值 (>8 mg·L−1) 补加发酵液,替代部分乙酸钠,通过实际污水厂运行数据,拟合得到发酵液投量X (m3) 与乙酸钠吨水节约量Y (g·m−3) 的线性关系式Y=4.9X+3.5,其中R2=0.91。该研究结果可为联合发酵制备优质碳源提升污水厂脱氮工程应用提供参考。Abstract: The low content of carbon sources in the influent of municipal wastewater treatment plants (WWTP) in China generally affects the effectiveness of biological denitrification. At present, sodium acetate and other additional carbon sources are mostly supplemented to meet the effluent total nitrogen standard, resulting in a large number of chemical consumption and carbon emissions, which is not in line with the goal of “Carbon peak carbon neutral” in China. In this study, the efficacy of volatile fatty acid (VFA) concentration from co-fermentation of food waste and waste activated sludge in pilot equipment (10 t·d−1) was evaluated. Fermentation broth with high content of VFA was fed as carbon sources into a municipal WWTP in Kunshan, China to reduce the addition of exogenous acetate. The experimental results showed that the concentration of VFA was the highest when the volume ratio of food waste to residual sludge was 7∶3, which reached 54.3 g·L−1 (in terms of COD). The main content of VFA was acetate and propionate, which accounted for 36.5% and 22.8%, respectively. In pilot experiments, the maximum, minimum, and average concentration of VFA was 67.5 g·L−1(in terms of COD), 42.4 g·L−1(in terms of COD), and 55.0 g·L−1(in terms of COD), respectively. In denitrification experiments, the nitrogen removal was 86.5% in 1.5 h with the addition of acetate, 81.0% in 4.5 h with the addition of fermentation broth with high content of VFA, and only 69.8% with the addition of food waste. The fermentation broth was added to replace part of the acetate according to the warning threshold of TN in the effluent (>8 mg·L−1). Based on the data of the municipal WWTP, the linear relationship between the dosage of fermentation broth X (m3) and the saving of acetate per ton of wastewater Y (g·m−3) was obtained as “Y=4.9X+3.5 (R2=0.91)”. This study can provide a technical case for the application of high-efficiency carbon sources from the co-fermentation of food waste and waste activated sludge to enhance nitrogen removal in municipal WWTP.
-
Key words:
- food waste /
- joint fermentation /
- sewage treatment /
- denitrification and denitrification /
- pilot studies
-
表 1 厌氧发酵物料的主要参数
Table 1. The main parameters of anaerobic fermentation substrates
物料种类 TCOD / (g·L−1) pH TS / (g·L−1) VS / (g·L−1) 餐厨垃圾 87.7±6.8 5.6±0.4 69.3±3.3 58.5±2.0 剩余污泥 13.3±1.1 7.5±0.3 9.2±0.5 3.5±0.2 -
[1] 肖静, 许国仁. 低碳氮比污水对同步硝化反硝化脱氮的影响[J]. 水处理技术, 2012, 38(11): 77-80. [2] WANG X, DAIGGER G, LEE D-J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature [J]. Science Advances, 4(8): eaaq0210. [3] WANG X, DAIGGER G, LEE D-J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature [J]. 2018, 4(8): eaaq0210. [4] 刘超, 刘运东, 王志刚, 等. 低碳氮比条件下生物脱氮成本控制方法分析应用[J]. 给水排水, 2022, 58(12): 37-41. [5] 江宏川, 李俊辰, 杨梦曦, 等. “双碳”背景下外加碳源的环境经济效益分析与管理建议[C]//中国环境科学学会环境工程分会. 中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(三). 《工业建筑》杂志社有限公司, 2022: 6. DOI:10.26914/c.cnkihy.2022.027920. [6] LI X, CHEN H, HU L, et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal[J]. Environmental Science & Technology, 2011, 45(5): 1834-1839. [7] CHEN Y, LI X, ZHENG X, et al. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici[J]. Water Research, 2013, 47(2): 615-622. doi: 10.1016/j.watres.2012.10.035 [8] LI X, CHEN Y, ZHAO S, et al. Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA[J]. Biochemical Engineering Journal, 2014, 84: 28-35. doi: 10.1016/j.bej.2013.12.020 [9] 张念瑞, 李倩, 许曼娟, 等. 进料频率对餐厨垃圾与剩余污泥中温共发酵系统稳定性的影响[J]. 环境工程学报, 2018, 12(2): 638-644. [10] 李浩, 李倩, 王高骏, 等. 不同条件下厨余与污泥共发酵效率及能耗分析[J]. 环境工程学报, 2017, 11(7): 4305-4312. [11] 唐嘉陵, 王晓昌, 蒲云辉, 等. 餐厨垃圾酸性发酵及其产物为碳源的脱氮特性[J]. 中国环境科学, 2017, 37(4): 1426-1433. [12] 邱圣杰, 刘瑾瑾, 李夕耀, 等. 剩余污泥碱性发酵产物对硝化过程及性能的影响[J]. 环境科学, 2020, 41(3): 1418-1424. [13] 袁悦, 刘瑾瑾, 彭永臻. 污泥厌氧发酵物强化低碳氮比生活污水脱氮除磷[J]. 哈尔滨工业大学学报, 2019, 51(8): 14-19. [14] 王雪婷, 顾霞, 徐先宝, 等. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. doi: 10.16085/j.issn.1000-6613.2022-1883 [15] 苏萍萍, 侯亚婷, 黄政锋, 等. 丙酸钠为碳源时短程反硝化过程中亚硝酸盐积累特性研究[J]. 山东化工, 2022, 51(23): 213-215. [16] 张佳颖, 刘心怡, 周俊才, 等. 乳酸钠和乙酸钠作为碳源对生物脱氮的影响[J/OL]. 中国给水排水: 1-9[2023-10-17]. http://kns.cnki.net/kcms/detail/12.1073.TU.20230209.1615.002.html. [17] 闫建平. 内源反硝化过程N2O释放特性及影响因素研究 [D]. 西安: 西安建筑科技大学, 2017. [18] CHEN Y, GUO L, ZHANG J, et al. Interaction of short-chain fatty acids carbon source on denitrification[J]. Environmental Technology, 2017, 38(15): 1915-1925. doi: 10.1080/09593330.2016.1240714 [19] 薛一鸣, 李丽, 李皇, 等. 不同C/N比和碳源种类对养殖水体氨氮去除途径及氮源选择的影响[J]. 海洋湖沼通报, 2020(6): 93-98.