-
挥发性有机物 (volatile organic compounds, VOCs) 是光化学烟雾和二次有机气溶胶 (SOAs) 的重要前体物[1],易引发大气污染如臭氧污染及PM2.5[2]。VOCs会导致人体内肿瘤的形成[3]。2020年,我国工业源VOCs的排放量约为217.1×104 t,占总排放量的35.6%。其中,石油、煤炭及其他燃料加工业为52.79×104 t,化学原料和化学制品制造业为42.77×104 t,橡胶和塑料制品业为13.46×104 t,其他行业为108.12×104 t[4]。为进一步改善环境空气质量,应全面加强重点行业VOCs的综合治理。
吸附技术具有能耗低、操作简单、运行成本低等优点,广泛应用于低浓度含VOCs废气的净化中[5]。活性炭是最为常用的吸附剂,具有良好的物理化学性质,但在温度较高时易自燃存在安全隐患[6]。分子筛不易燃,其煅烧再生性能优异,在干燥条件下对VOCs吸附性能良好而成为替代活性炭的吸附材料[7]。在实际工业过程中,VOCs中往往含有水分,将与VOCs发生竞争吸附,从而导致吸附剂的吸附容量下降,尤其在高湿度环境下,吸附容量将急剧下降[8-10]。YIN等[11]采用高温水热法对NaY分子筛疏水改性,未改性的NaY分子筛在干燥条件下对甲苯的吸附量为178.6 mg·g−1,在相对湿度 (relative humidity,RH) 为50%时对甲苯的吸附量为11.26 mg·g−1,对水的吸附量为237.24 mg·g−1。LI等[12]在不同湿度下,研究了10种商业吸附剂在碱改性前后对VOCs的吸附解吸特性,发现在加入湿度后的体系中,大部分分子筛对二甲苯的吸附能力几乎下降到零。因此,提高水分存在条件下分子筛吸附剂的吸附性能是吸附工艺实际应用面临的关键问题。
分子筛的亲疏水性程度与SiO2/AlO3和表面极性羟基有关,故分子筛疏水改性的方法通常包括脱铝和覆硅改性[13-14]。常用的脱铝方法有水热脱铝、酸处理、EDTA处理,但其对材料的晶体结构有影响,会降低材料结晶度[15]。覆硅法有接枝法、共缩合法、有序介孔有机硅法,其中接枝法和共缩合法这2种方法研究较多[16-17]。LU等[18]通过苯基硅烷的架桥作用合成了具有高疏水性和热稳定性的Y@St-DVB复合材料,在RH为60%和90%条件下分别是Y沸石的1.97和1.96倍,对甲苯的吸附量分别为131.9 mg·g−1和118.3 mg·g−1。李承龙等[19]利用正辛基三乙氧基硅烷改性,成功地将—Si(CH2)7CH3基团接枝到ZSM-5分子筛表面,改性后的分子筛水接触角增大到152°,静态水吸附量下降了26.4%,实现了超疏水性,但由于改性后分子筛的孔容减小,对正己烷静态吸附量由8.60%降至7.45%。张媛媛等[20]采用3种不同硅烷试剂对NaY分子筛进行改性,改性后的样品在RH为80%条件下甲苯的吸附量都得到了增加,其中三甲基氯硅烷 (TMCS) 增加量最大为78%,由12.2 mg·g−1增至21.1 mg·g−1。
汽车涂装行业废气湿度高、成分复杂,亟需根据涂装行业环境条件,研究相关污染物的排放特征及吸附过程特点,并开展相应的分子筛疏水改性研究。然而,相关成果尚未见报道。本研究以汽车涂装行业VOCs污染物为对象,选取甲苯、二甲苯、乙酸丁酯为代表污染物,对NaY分子筛进行覆硅改性研究,结合分子筛结构表征和疏水测定,获取有效的疏水改性方法,制备用于汽车涂装高湿度环境的疏水性强且吸附性能佳的改性NaY分子筛,以期为涂装行业分子筛转轮VOCs吸附的工业应用提供参考。
NaY分子筛疏水改性及其对汽车涂装VOCs废气的吸附
Hydrophobic modification of NaY molecular sieve and its adsorption on VOCs exhaust gas from automobile painting
-
摘要: 针对水分存在条件下分子筛吸附VOCs吸附容量急剧下降的问题,以汽车涂装过程产生的二甲苯、甲苯、乙酸丁酯为VOCs代表,采用三甲基氯硅烷 (TMCS) /正己烷对NaY分子筛进行疏水改性,以提高高湿度条件下分子筛对VOCs的吸附性能。结果表明,最佳的TMCS/正己烷体积比为1:7 (NaY-4) ,在RH=65%条件下,NaY-4对甲苯的吸附量为7.15 mg·g−1,是未改性NaY分子筛吸附量的2.58倍,且经5次吸附脱附循环实验,吸附容量仍保持在92.56%以上。BET、XRD、FTIR及接触角等表征结果表明,改性并未对分子筛的晶型结构造成影响,但会减小其比表面积;改性后Si—CH3和Si—O—Si疏水官能团增多,接触角由13.2°增加到121.6°,疏水性增强。该研究结果可为分子筛转轮VOCs吸附技术的工业应用提供参考。Abstract: In view of the sharp decline of VOCs adsorption capacity in the presence of moisture, the NaY molecular sieve was modified by trimethylchlorosilane (TMCS)/hexane to improve the adsorption performance of molecular sieve for VOCs under high humidity, using xylene, toluene and butyl acetate in automotive painting process as VOCs representatives. The results showed that the optimal volume ratio of TMCS/hexane was 1:7 (NaY-4), and the adsorption capacity of NaY-4 for toluene was 7.15 mg·g−1 at RH=65%, which was 2.58 times as much as the adsorption capacity of unmodified NaY molecular sieve, and the adsorption capacities remained above 92.56% after five adsorption and desorption cycles. The characterization results of BET, XRD, FTIR and contact angle showed that the modification did not affect the crystalline structure of molecular sieve, but reduced its specific surface area. After modification, hydrophobic functional groups of Si—CH3 and Si—O—Si increased, the contact angle increased from 13.2° up to 121.6°, and the hydrophobicity was enhanced. The research results can provide references for the industrial application of the molecular sieve runner VOCs adsorption technology.
-
Key words:
- VOCs adsorption /
- molecular sieve /
- coating industry /
- hydrophobic modification
-
表 1 分子筛参数
Table 1. Parameters of molecular sieve
分子筛 BET比表面积/
(m2·g−1)孔容/
(cm3·g−1)孔径/
nm静态水
吸附量Si/Al NaY 390.233 0.947 9.706 25.74% 5.2 13X 297.347 0.444 7.976 21.42% 4.8 5A 203.873 0.277 5.429 18.46% 3 10A 289.237 0.642 8.878 21.85% 2.5 表 2 VOCs的物性参数
Table 2. Physical parameters of VOCs
VOCs 分子式 分子量/
(g·mol−1)沸点/
℃动力学
直径/nm甲苯 C7H8 92.14 110.6 0.67 二甲苯 C8H10 106.17 138.5 0.70 乙酸丁酯 C6H12O2 116.16 126.6 1.20 表 3 不同比例TMCS/正己烷改性分子筛的比表面积、孔结构及静态水吸附量
Table 3. Specific surface area, pore structure and static water adsorption of molecular sieves modified with different ratios of TMCS/hexane
分子筛 比表面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm 静态水吸附量 NaY-1 310.53 0.536 9.034 35.93% NaY-2 270.393 0.3403 8.793 3.86% NaY-3 172.425 0.3143 8.039 2.18% NaY-4 167.609 0.281 7.672 1.36% NaY-5 153.188 0.258 7.302 0.95% NaY-6 149.166 0.236 7.046 0.53% -
[1] ZHANG K, LI L, HUANG L, et al. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai[J]. Atmospheric Environment, 2020, 232: 11751. [2] ZHENG Y F, FU K X, YU Z H, et al. Oxygen vacancies in a catalyst for VOCs oxidation: synthesis, characterization, and catalytic effects[J]. Journal of Materials Chemistry A, 2022, 10(27): 14171-14186. doi: 10.1039/D2TA03180A [3] TSAI W T. An overview of health hazards of volatile organic compounds regulated as indoor air pollutants[J]. Reviews on Environmental Health, 2019, 34(1): 81-89. doi: 10.1515/reveh-2018-0046 [4] 吴季友, 田成川, 刘廷良. 中国生态环境统计年报2020[M]. 北京: 中国环境出版集团, 2022. [5] YANG C T, MIAO G, PI Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. doi: 10.1016/j.cej.2019.03.232 [6] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213 [7] ZHANG L, PENG Y X, ZHANG J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016, 37(6): 800-809. doi: 10.1016/S1872-2067(15)61073-7 [8] PUI W K, YUSOFF R, AROUA M K. A review on activated carbon adsorption for volatile organic compounds (VOCs)[J]. Reviews in Chemical Engineering, 2019, 35(5): 649-668. doi: 10.1515/revce-2017-0057 [9] GUO X C, LI X Y, GAN G Q, et al. Functionalized activated carbon for competing adsorption of volatile organic compounds and water[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56510-56518. [10] KEAUS M, TROMMLER U, HOLZER F, et al. Competing adsorption of toluene and water on various zeolites[J]. Chemical Engineering Journal, 2018, 351: 356-363. doi: 10.1016/j.cej.2018.06.128 [11] YIN T, MENG X, JIN L, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. doi: 10.1016/j.micromeso.2020.110327 [12] LI X F, WANG J, GUO Y Y, et al. Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds[J]. Chemical Engineering Journal, 2021, 411: 128558. doi: 10.1016/j.cej.2021.128558 [13] 刘星园, 张永锋, 肖凯, 等. 分子筛材料在VOCs吸附中的研究进展[J]. 化工进展, 2022, 41(5): 2504-2510. [14] 黄海凤, 戎文娟, 顾勇义, 等. ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J]. 环境科学学报, 2014, 34(12): 3144-3151. [15] WANG C, GUO H D, LENG S Z, et al. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46(4): 330-348. doi: 10.1080/10408436.2020.1819198 [16] 庄瑞杰, 于庆君, 唐晓龙, 等. 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020. [17] FRANK H, MAXIMILIAN C, JÜRGEN M, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition, 2006, 45(20): 3216-3251. doi: 10.1002/anie.200503075 [18] LU S C, LIU Q L, HAN R, et al. Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions[J]. Chemical Engineering Journal, 2021, 409: 128194. doi: 10.1016/j.cej.2020.128194 [19] 李承龙, 刘才林, 杨海君, 等. ZSM-5高硅分子筛硅烷化疏水改性的研究[J]. 化学研究与应用, 2013, 25(2): 236-239. doi: 10.3969/j.issn.1004-1656.2013.02.019 [20] 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. [21] 党小庆, 王琪, 曹利, 等. 吸附法净化工业VOCs的研究进展[J]. 环境工程学报, 2021, 15(11): 3479-3492. [22] LU S C, LIU Q L, HAN R, et al. Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds[J]. Journal of Environmental Sciences, 2021, 105(7): 184-203. [23] BRENNAN J K, BANDOSZ T J, THOMSON K T, et al. Water in porous carbons[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 187: 539-268. [24] 马越, 程妍. 热处理对粉煤灰酸渣基二氧化硅气凝胶结构和疏水性的影响[J]. 无机盐工业, 2022, 54(3): 109-112. [25] 刘媛. 改性分子筛对二氯甲烷废气吸附性能研究[D]. 兰州: 兰州大学, 2021. [26] WANG J L, SHI Y J, KONG F Z, et al. Low-temperature VOCs oxidation performance of Pt/zeolites catalysts with hierarchical pore structure[J]. Journal of Environmental Sciences, 2023, 124: 505-512. doi: 10.1016/j.jes.2021.11.016 [27] 祝振鑫. 膜材料的亲水性、膜表面对水的湿润性和水接触角的关系[J]. 膜科学与技术, 2014, 34(2): 1-4.