-
随着城镇化进程的推进,城镇生活、工厂和药企等污水排放量逐年提高,处理废水以减小对水资源污染迫在眉睫。废水氮磷会造成水体富营养化,溶解氧降低,甚至对生物有直接毒性,好氧颗粒污泥 (aerobic granular sludge,AGS) 脱氮除磷能力较絮状泥效率更高,更利于工程管理[1]。与活性污泥法相比,AGS具有生物量高,沉降性能好,抗冲击胁迫能力强等优点。可以预测,AGS大规模工业化应用是将来的发展方向[2]。但是,AGS的形成受到许多因素的综合影响,包括反应器的运行,颗粒化进程、进水水质等。其中,颗粒的形成与性质是一个重要的影响因素,因此,能够快速制备优异性能的AGS来脱氮除磷具有良好的使用前景[3]。
目前,关于好氧颗粒污泥快速颗粒化已经进行了大量研究。HAO等[4]发现,常见的阳离子包括Mg2+、Ca2+、Fe2+、Cu2+、Zn2+和K+可以通过静电相互作用影响EPS和细胞粘附,在促进颗粒化时,应当添加适合的离子种类和浓度。虽然那这种手段是经常使用的,然而,添加金属离子的作用是有限的,不足以加速造粒和提高颗粒的稳定性。因此需要与其他策略相结合,以提高AGS的造粒和稳定性。LONG等[5]发现,将25%成熟AGS与絮状活性污泥接种,在18 d内即可获得好氧颗粒污泥。但是AGS难以利用且资源稀缺。因此,用AGS作为核心来大规模加速造粒是不切实际的。添加载体能够为AGS的初始形成提供核心,加速微生物粘附,从而提高颗粒化速度。LIANG等[6]报道,投加3.5 g·L−1尺寸为 (0.2 ± 0.025) mm的颗粒活性炭,与空白组相比能够提前12 d得到成熟的AGS。载体的加入会影响造粒过程和颗粒的稳定性。该方法操作简单,性价比高。载体的加入可以显著加快AGS的制粒速度,增强AGS的稳定性,可以在实践中实现大规模应用。但是考虑到与活性污泥的生物相容性和亲和性,大量使用的成本,以及载体使用回收困难造成的二次环境污染等问题。通过菌种筛选,再次反投加回原体系促进好氧颗粒污泥颗粒化,是一种可行且有效的手段。
文献报道添加絮凝细菌[7],真菌[8]也可以加速活性污泥的造粒。在这些研究的基础上,真菌菌丝球 (丝状真菌的自固定化形式) 因其具有沉降速度快、易固液分离,高生物活性,吸附性能好、处理污染物能力高,能分泌各种功能酶等优异性能[9-10],作为AGS形成载体颇受青睐。CHEN等[11]利用塔宾曲霉构建了好氧颗粒污泥,加速颗粒化并且提高污染物去除效率。同时,好氧颗粒污泥尺寸影响了好氧-厌氧区结构分布,从而影响颗粒性能[12]。此外,粒径影响储存稳定性的影响也有报道[13]。因此,探究添加不同尺寸菌丝球载体对好氧颗粒污泥的形成以及污染物去除的影响有重要意义。
为了实现AGS的快速形成与优异去除氮磷性能的保持,并且探究菌丝球影响性能的机理,本研究从实验室保存污泥中筛选出1株能够自发成球的霉菌,并选取成熟大、中、小3种尺寸的曲霉菌丝球,通过定期检测培养过程中EPS分泌、颗粒化进程、污染物氮磷去除能力、以及菌群分布和演变情况的变化规律来揭示反投加霉菌形成不同粒径AGS过程中产生的影响以及原因,探索反投加真菌载体对AGS性能的影响规律,为AGS技术的发展进步提供理论支持。
不同粒径曲霉-好氧颗粒污泥的微环境对脱氮除磷能力影响
Effects of different size Aspergillus-aerobic granular sludge microenvironment on nitrogen and phosphorus removal capacity
-
摘要: 针对目前实验室好氧颗粒污泥颗粒化慢,稳定性差等问题。以自发成球的曲霉为核心,开发了絮状污泥的快速颗粒化技术,提高体系运行稳定性。对形成的大 (3.0 mm<d≤5.0 mm) 、中 (1.5 mm<d≤3.0 mm) 、小 (d≤1.5 mm) 3种尺寸的曲霉-好氧颗粒污泥 (Aspergillus-AGS) 进行了性能对比,然后结合脱氮除磷性能实验监测数据,对曲霉投加后菌群结构的演变进行分析。大尺寸的Aspergillus-AGS是最优选,能促进胞外多聚物的分泌,从而有利于颗粒化性能提高,维持颗粒稳定结构,并且提高了污染物去除效率。在投加不同粒径的反应器中,通过菌群分析,曲霉Aspergillus作为优势载体菌种在对照组絮状污泥、大、中和小尺寸反应器中占比分别是4.17%、85.67%、47.20%和58.00%。此外,大尺寸颗粒反应器中,细菌种类NOB、PAO占比相比其他反应器明显更高,其中反硝化菌Ferruginibacter、Castellaniella等丰度较高,脱氮除磷有明显优势,L-AGS体系6 h内氨氮的去除率为77.2%,总氮去除率为52.8%,总磷的去除率为49.2%,硝酸盐的去除率为93.9%。Abstract: Aiming at the problems of slow granulation and poor stability of aerobic granular sludge in laboratory. Aspergillus, obtained by screening and separation in the laboratory, which can form into balls automatically in the process of oscillation culture, was added to the flocculent sludge system in reverse as a carrier to promote the granulation process. The performance of the large (3.0 mm < D ≤ 5.0 mm), medium (1.5 mm < D ≤3.0 mm), and small (D ≤1.5 mm) AGS were compared, and when combined with the monitoring experimental data of pollutant removal performance, and the evolution of bacterial community structure were analyzed. The results showed that the large size was the most optimal AGS size compared to the small and middle, which could promote the secretion of extracellular polymeric substances, thus improving the granulation performance, maintaining the stable structure of particles, and showing good comprehensive ability in the treatment of pollutants. In the reactors with different particle sizes, microbial community analysis showed that the fungus Aspergillus, as the dominant carrier of aerobic granular sludge, accounted for 4.17%, 85.67%, 47.20%, and 58.00% in the flocculent sludge, large, middle and small size reactors. In addition, the proportion of bacteria NOB and PAO in the large size adding reactor was significantly higher than those in the other two reactors. Denitrification bacteria such as Ferruginibacter and Castellaniella had high abundance and had obvious advantages in nitrogen and phosphorus removal. The removal rate of ammonia nitrogen, total nitrogen, total phosphorus and nitrate in L-AGS system within 6 h was 77.2%, 52.8%, 49.2% and 93.9%, respectively.
-
表 1 合成模拟废水成分表 (COD=1 000 mg·L−1)
Table 1. The table of synthetic simulated wastewater composition
组成 浓度/(mg·L−1) 组成 浓度/(mg·L−1) C6H12O6 468.72 CaCl2 166.51 CH3COONa 640.63 EDTA 50 NH4Cl 382.13 ZnSO4 2.2 KH2PO4 22 MnCl2·4H2O 5.06 K2HPO4 24 (NH4)6Mo7O2·4H2O 1.1 MgSO4 25.38 CuSO4·5H2O 1.57 FeSO4 20.34 CoCl2·5H2O 1.61 表 2 不同pH培养基环境中菌丝球生长情况表
Table 2. The table of mycelium pellet growth in different pH medium
pH 菌丝球生长情况 3.0 菌丝球、正常 6.0 菌丝球、较多 7.0 菌丝球、正常 8.0 菌丝团,菌丝球较少 10.0 没有形成 表 3 AGS细菌多样性指数的变化
Table 3. Changes of bacterial diversity index in AGS
样品 Ace Chao1 Shannon Simpson 平均 L-AGS 263.19 265.06 5.10 0.89 1 M-AGS 304.51 305.65 4.84 0.93 1 S-AGS 296.69 292.52 5.01 0.92 1 FS 241.34 240.05 4.19 0.95 1 -
[1] 郑丽颖, 温俊宝. 环丙沙星对好氧颗粒污泥同步脱氮除磷的影响[J]. 水处理技术, 2020, 46(10): 55-60. [2] HAN X S, JIN Y, YU J G. Rapid formation of aerobic granular sludge by bioaugmentation technology: A review[J]. Chemical Engineering Journal, 2022, 437: 134971. doi: 10.1016/j.cej.2022.134971 [3] 郭之晗, 徐云翔, 李天皓, 等. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697. [4] HAO W, LI Y, LV J, et al. The biological effect of metal ions on the granulation of aerobic granular activated sludge[J]. Journal of Environmental Sciences (China), 2016, 44: 252-259. doi: 10.1016/j.jes.2015.10.031 [5] LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Bioresource Technology, 2014, 166: 57-63. doi: 10.1016/j.biortech.2014.05.039 [6] LIANG Z, TU Q, SU X, et al. Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon[J]. Environmental Science and Pollution Resesrch, 2019, 26(6): 6123-6132. doi: 10.1007/s11356-018-04101-1 [7] IVANOV V, WANG X H, STABNIKOVA O. Starter culture of Pseudomonas veronii strain B for aerobic granulation[J]. World Journal of Microbiology and Biotechnology, 2007, 24(4): 533-539. [8] WANG H L, YU G L, LIU G S, et al. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment[J]. Biochemical Engineering Journal, 2006, 28(1): 99-103. doi: 10.1016/j.bej.2005.10.002 [9] WANG L, YU T, MA F, et al. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review[J]. Water Environment Research, 2019, 91(2): 93-100. doi: 10.1002/wer.1026 [10] LI L, LIANG T, LIU W, et al. A comprehensive review of the mycelial pellet: Research status, applications, and future prospects[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 16911-16922. [11] CHEN Y Y, GE J Y, WANG S J, et al. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment[J]. Science of the Total Environment, 2020, 739: 140128. doi: 10.1016/j.scitotenv.2020.140128 [12] CHEN Y Y, GENG N F, HU T H, et al. Adaptive regulation of activated sludge's core functional flora based on granular internal spatial microenvironment[J]. Journal of Environmental Management, 2022, 319: 115714. doi: 10.1016/j.jenvman.2022.115714 [13] 张立楠, 张斌超, 刘祖文, 等. 粒径对好氧颗粒污泥储存稳定性的影响[J]. 化工进展, 2019, 38(7): 3450-3457. [14] 吴瑞馨, 赵彬, 陈宇航, 等. 高有机负荷对好氧颗粒污泥形成和稳定性能的影响[J]. 环境工程学报, 2023, 17(05): 1662-1673. [15] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research, 2002, 36: 3620-3628. doi: 10.1016/S0043-1354(02)00055-6 [16] APHA A. Standard methods for the examination of water and wastewater[J]. American Public Health Association Inc, Washington DC 1998. [17] DENG S, WANG L X, SU H J. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge[J]. Journal of Environmental Management, 2016, 173: 49-54. [18] LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36: 1653-1665. doi: 10.1016/S0043-1354(01)00379-7 [19] TAKAHASHI S, TOMITA J, NISHIOKA K, et al. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing[J]. PLoS One, 2014, 9(8): e105592. doi: 10.1371/journal.pone.0105592 [20] LIAO W, LIU Y, FREAR C, et al. A new approach of pellet formation of a filamentous fungus- Rhizopus oryzae[J]. Bioresource Technology, 2007, 98(18): 3415-3423. doi: 10.1016/j.biortech.2006.10.028 [21] LIU Y S, WU J Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4): 623-628. [22] BEUN J J, VAN LOOSDRECHT M C M, HEIJNEN J J. Aerobic granulation in a sequencing batch airlift reactor[J]. Water Research:A Journal of the International Water Association, 2002, 36: 702-712. [23] 朱荣霞, 刘树信, 谭周亮, 等. 污水处理系统中比耗氧速率的测定及其应用[J]. 四川环境, 2022, 41: 279-285. [24] 李志华, 王晓昌, 王耀东. 含盐量对好氧颗粒污泥形成过程的影响[J]. 环境工程学报, 2008, 9: 1228-1230. [25] 耿明月. 菌丝球诱导形成好氧颗粒污泥的作用机制及运行特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. [26] HOUGHTON J I, QUARMBY J, STEPHENSON T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer[J]. Water Science and Technology, 2018, 44: 373-379. [27] HUANGFU X L, XU Y, LIU C, et al. A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates[J]. Chemosphere, 2019, 219: 766-83. doi: 10.1016/j.chemosphere.2018.12.044 [28] JIN Y, XIONG W, ZHOU N, et al. Role of initial bacterial community in the aerobic sludge granulation and performance[J]. Journal of Environmental Management, 2022, 309: 114706. doi: 10.1016/j.jenvman.2022.114706 [29] LIN H, MA R, HU Y, et al. Reviewing bottlenecks in aerobic granular sludge technology: Slow granulation and low granular stability[J]. Environmental Pollution, 2020, 263: 114638. doi: 10.1016/j.envpol.2020.114638 [30] TAN C H, KOH K S, XIE C, et al. The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules[J]. Isme Journal, 2014, 8(6): 1186-1197. doi: 10.1038/ismej.2013.240 [31] ISLAM M S, ZHANG Y, DONG S, et al. Dynamics of microbial community structure and nutrient removal from an innovative side-stream enhanced biological phosphorus removal process[J]. Journal of Environmental Management, 2017, 198: 300-307. [32] BASSIN J, TAVARES D, BORGES R, et al. Development of aerobic granular sludge under tropical climate conditions: The key role of inoculum adaptation under reduced sludge washout for stable granulation[J]. Journal of Environmental Management, 2019, 230: 168-182. [33] WAN D, LI Q, LIU Y, et al. Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: Secondary pollution control, pH balance and microbial community analysis[J]. Water Research, 2019, 165: 115004. doi: 10.1016/j.watres.2019.115004 [34] SUN Y, ALI A, ZHENG Z, et al. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio[J]. Bioresource Technology, 2022, 347: 126369. doi: 10.1016/j.biortech.2021.126369 [35] PENG H, GUO J B, LI H B, et al. Granulation and response of anaerobic granular sludge to allicin stress while treating allicin-containing wastewater[J]. Biochemical Engineering Journal, 2021, 169: 107971. doi: 10.1016/j.bej.2021.107971 [36] HETZ S A, HORN M A. Burkholderiaceae are key acetate assimilators during complete denitrification in acidic cryoturbated peat circles of the arctic tundra[J]. Frontiers in Microbiology, 2021, 12: 2307-2321. [37] WANG Z, YUAN S, DENG Z, et al. Evaluating responses of nitrification and denitrification to the co-selective pressure of divalent zinc and tetracycline based on resistance genes changes[J]. Bioresource Technology, 2020, 314: 123769. doi: 10.1016/j.biortech.2020.123769 [38] DENG L J, REN Y, WEI C H, et al. Biodegradation of pyrene by a novel strain of Castellaniella sp. under denitrifying condition[J]. Journal of Environmental Chemical Engineering, 2021, 9: 104970. doi: 10.1016/j.jece.2020.104970