[1] 郑丽颖, 温俊宝. 环丙沙星对好氧颗粒污泥同步脱氮除磷的影响[J]. 水处理技术, 2020, 46(10): 55-60.
[2] HAN X S, JIN Y, YU J G. Rapid formation of aerobic granular sludge by bioaugmentation technology: A review[J]. Chemical Engineering Journal, 2022, 437: 134971. doi: 10.1016/j.cej.2022.134971
[3] 郭之晗, 徐云翔, 李天皓, 等. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697.
[4] HAO W, LI Y, LV J, et al. The biological effect of metal ions on the granulation of aerobic granular activated sludge[J]. Journal of Environmental Sciences (China), 2016, 44: 252-259. doi: 10.1016/j.jes.2015.10.031
[5] LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Bioresource Technology, 2014, 166: 57-63. doi: 10.1016/j.biortech.2014.05.039
[6] LIANG Z, TU Q, SU X, et al. Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon[J]. Environmental Science and Pollution Resesrch, 2019, 26(6): 6123-6132. doi: 10.1007/s11356-018-04101-1
[7] IVANOV V, WANG X H, STABNIKOVA O. Starter culture of Pseudomonas veronii strain B for aerobic granulation[J]. World Journal of Microbiology and Biotechnology, 2007, 24(4): 533-539.
[8] WANG H L, YU G L, LIU G S, et al. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment[J]. Biochemical Engineering Journal, 2006, 28(1): 99-103. doi: 10.1016/j.bej.2005.10.002
[9] WANG L, YU T, MA F, et al. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review[J]. Water Environment Research, 2019, 91(2): 93-100. doi: 10.1002/wer.1026
[10] LI L, LIANG T, LIU W, et al. A comprehensive review of the mycelial pellet: Research status, applications, and future prospects[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 16911-16922.
[11] CHEN Y Y, GE J Y, WANG S J, et al. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment[J]. Science of the Total Environment, 2020, 739: 140128. doi: 10.1016/j.scitotenv.2020.140128
[12] CHEN Y Y, GENG N F, HU T H, et al. Adaptive regulation of activated sludge's core functional flora based on granular internal spatial microenvironment[J]. Journal of Environmental Management, 2022, 319: 115714. doi: 10.1016/j.jenvman.2022.115714
[13] 张立楠, 张斌超, 刘祖文, 等. 粒径对好氧颗粒污泥储存稳定性的影响[J]. 化工进展, 2019, 38(7): 3450-3457.
[14] 吴瑞馨, 赵彬, 陈宇航, 等. 高有机负荷对好氧颗粒污泥形成和稳定性能的影响[J]. 环境工程学报, 2023, 17(05): 1662-1673.
[15] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research, 2002, 36: 3620-3628. doi: 10.1016/S0043-1354(02)00055-6
[16] APHA A. Standard methods for the examination of water and wastewater[J]. American Public Health Association Inc, Washington DC 1998.
[17] DENG S, WANG L X, SU H J. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge[J]. Journal of Environmental Management, 2016, 173: 49-54.
[18] LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36: 1653-1665. doi: 10.1016/S0043-1354(01)00379-7
[19] TAKAHASHI S, TOMITA J, NISHIOKA K, et al. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing[J]. PLoS One, 2014, 9(8): e105592. doi: 10.1371/journal.pone.0105592
[20] LIAO W, LIU Y, FREAR C, et al. A new approach of pellet formation of a filamentous fungus- Rhizopus oryzae[J]. Bioresource Technology, 2007, 98(18): 3415-3423. doi: 10.1016/j.biortech.2006.10.028
[21] LIU Y S, WU J Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4): 623-628.
[22] BEUN J J, VAN LOOSDRECHT M C M, HEIJNEN J J. Aerobic granulation in a sequencing batch airlift reactor[J]. Water Research:A Journal of the International Water Association, 2002, 36: 702-712.
[23] 朱荣霞, 刘树信, 谭周亮, 等. 污水处理系统中比耗氧速率的测定及其应用[J]. 四川环境, 2022, 41: 279-285.
[24] 李志华, 王晓昌, 王耀东. 含盐量对好氧颗粒污泥形成过程的影响[J]. 环境工程学报, 2008, 9: 1228-1230.
[25] 耿明月. 菌丝球诱导形成好氧颗粒污泥的作用机制及运行特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[26] HOUGHTON J I, QUARMBY J, STEPHENSON T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer[J]. Water Science and Technology, 2018, 44: 373-379.
[27] HUANGFU X L, XU Y, LIU C, et al. A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates[J]. Chemosphere, 2019, 219: 766-83. doi: 10.1016/j.chemosphere.2018.12.044
[28] JIN Y, XIONG W, ZHOU N, et al. Role of initial bacterial community in the aerobic sludge granulation and performance[J]. Journal of Environmental Management, 2022, 309: 114706. doi: 10.1016/j.jenvman.2022.114706
[29] LIN H, MA R, HU Y, et al. Reviewing bottlenecks in aerobic granular sludge technology: Slow granulation and low granular stability[J]. Environmental Pollution, 2020, 263: 114638. doi: 10.1016/j.envpol.2020.114638
[30] TAN C H, KOH K S, XIE C, et al. The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules[J]. Isme Journal, 2014, 8(6): 1186-1197. doi: 10.1038/ismej.2013.240
[31] ISLAM M S, ZHANG Y, DONG S, et al. Dynamics of microbial community structure and nutrient removal from an innovative side-stream enhanced biological phosphorus removal process[J]. Journal of Environmental Management, 2017, 198: 300-307.
[32] BASSIN J, TAVARES D, BORGES R, et al. Development of aerobic granular sludge under tropical climate conditions: The key role of inoculum adaptation under reduced sludge washout for stable granulation[J]. Journal of Environmental Management, 2019, 230: 168-182.
[33] WAN D, LI Q, LIU Y, et al. Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: Secondary pollution control, pH balance and microbial community analysis[J]. Water Research, 2019, 165: 115004. doi: 10.1016/j.watres.2019.115004
[34] SUN Y, ALI A, ZHENG Z, et al. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio[J]. Bioresource Technology, 2022, 347: 126369. doi: 10.1016/j.biortech.2021.126369
[35] PENG H, GUO J B, LI H B, et al. Granulation and response of anaerobic granular sludge to allicin stress while treating allicin-containing wastewater[J]. Biochemical Engineering Journal, 2021, 169: 107971. doi: 10.1016/j.bej.2021.107971
[36] HETZ S A, HORN M A. Burkholderiaceae are key acetate assimilators during complete denitrification in acidic cryoturbated peat circles of the arctic tundra[J]. Frontiers in Microbiology, 2021, 12: 2307-2321.
[37] WANG Z, YUAN S, DENG Z, et al. Evaluating responses of nitrification and denitrification to the co-selective pressure of divalent zinc and tetracycline based on resistance genes changes[J]. Bioresource Technology, 2020, 314: 123769. doi: 10.1016/j.biortech.2020.123769
[38] DENG L J, REN Y, WEI C H, et al. Biodegradation of pyrene by a novel strain of Castellaniella sp. under denitrifying condition[J]. Journal of Environmental Chemical Engineering, 2021, 9: 104970. doi: 10.1016/j.jece.2020.104970