-
好氧高温堆肥过程中通常伴随着严重的氮素损失,散发恶臭、释放温室气体的现象,导致养分流失,影响堆肥产品的实际使用价值[1]。如何有效地控制氮素损失一直是好氧堆肥技术中的难点。研究结果表明,氨的累积挥发是堆肥过程中氮素损失的主要途径[2],并且该过程集中发生在微生物高度活跃的升温阶段和高温阶段[3]。堆肥底物中丰富的易降解有机质在微生物代谢作用下迅速分解,代谢过程释放的热量及产生的铵态氮 (NH4+-N) 在堆体中大量积累,使堆体处于较高温度与pH值,从而导致固相中NH4+-N转化为氨气 (NH3) 逸散造成严重氮素损失[4]。投加外源添加剂被认为是减少堆肥过程中减少氮素损失最便捷有效的方法[5]。常见的添加剂,如沸石与生物炭因比表面积较高,能通过吸附、离子交换等物理作用减少氨的释放[5-8 ]。镁盐与磷酸盐等化学添加剂能够降低堆肥系统pH值,以此来减少铵盐向氨的转化[9-10]。目前对于堆肥过程中氮素损失调控的研究多集中于对无机氮的调控,然而有机氮才是堆体中氮素存在的主要形式,含氮有机质在堆肥高温阶段快速矿化导致氨的累积挥发才是堆肥过程中氮素损失更深层次的原因[11]。
腐殖化过程实际上就是堆肥底物经过系列生化反应最终形成稳定类腐殖质的过程[12]。腐殖质前体物主要包括多糖、还原糖、多酚、氨基酸类物质及其不同组分的混合物,但是糖类物质作为能源物质会被微生物迅速分解转化,使其在堆肥系统中的作用受到极大限制[13]。酚类物质具有构建类腐殖质的原始骨架的作用[14],故多会选用以酚类作为前体物质去模仿腐殖化反应体系,譬如能代表多酚物质的儿茶酚。研究表明,添加儿茶酚可以促进腐殖质形成的非生物 (多酚-美拉德)途径,且相较于氨基酸、还原糖等易被生物代谢的前体物质更能在堆肥体系中发挥作用[13,15]。MnO2具有催化腐殖化的能力,且与生物酶活性中心具有相似的化学结构,能够通过非生物途径强化腐殖化过程,加强小分子有机质的缩聚,强化腐殖质的生成[16-20]。
基于强化腐殖化的理论基础,本研究通过添加儿茶酚和MnO2作为堆肥添加剂,旨在诱导堆肥初期易分解有机质向结构更稳定的类腐殖质物质转化,抑制其矿化作用,从源头上减少无机氮的产生,实现对氮素损失的调控,以期为以后的堆肥氮素保留研究提供新的研究思路和科学依据。
外源MnO2和儿茶酚对猪粪好氧堆肥氨挥发与氮素形态转化的影响
Effects of exogenous MnO2 and catechol on ammonia volatilization and nitrogen transformation in aerobic composting of swine manure
-
摘要: 为探究儿茶酚与MnO2的添加对强化堆肥腐殖化及氮素保留效果的影响,以猪粪与木屑为堆肥原材料,分别设置对照组 (CK,儿茶酚与MnO2质量分数均为0%),实验组 (T1,儿茶酚0%与MnO2 1%;T2,儿茶酚3%与MnO2 0%;T3,儿茶酚3%与MnO2 1%)4个处理,借助冗余分析、UV-vis、3D-EEM光谱技术,探究不同处理对堆肥基本理化性质、氮素转化过程及氮素保留机理的影响。结果表明,1% MnO2和3%儿茶酚的混合处理 (T3)堆肥过程中类氨基酸组分荧光强度显著增强,氨挥发受到明显抑制,堆肥结束时,混合处理氨累积挥发量为1.39 g,仅为CK的16.61%;有机氮组分中酸解氨态氮占比为17%,高于CK的14%;总凯氏氮相较于CK提升了9.00%,温度、pH值、EC值和GI值等基础指标均满足安全利用标准。三维荧光平行因子分析表明MnO2和儿茶酚的混合添加可有效削减堆肥初期含氮有机质的矿化分解,从而明显降低堆体升温阶段和高温阶段的氨挥发总量,实现氮素的保留。Abstract: In order to investigate the effects of catechol and MnO2 additions on the composting humification and nitrogen retention. four treatment groups were set including the control groups (CK, catechol and MnO2 witch mass fraction were both 0%), and the experimental groups (T1, catechol 0% and MnO2 1%; T2, catechol 3% and MnO2 0%; T3, catechol 3% and MnO2 1%) by using swine manure and wood chips as raw materials. Through redundancy analysis, UV-vis, and 3D-EEM spectroscopic analysis, the effects of different treatments on the basic physicochemical properties of compost, nitrogen transformation process, and nitrogen retention mechanism were revealed. The results showed that during the composting process of 1% MnO2 and 3% catechol, the fluorescence intensity of amino acid-like fraction in water-extracted organic matter was obviously enhanced, and the volatilization of ammonia was obviously inhibited, and the cumulative volatilization of ammonia in the mixed treatment (1.39 g at the end of composting) was only 16.61% of CK. And the amount of acidolyzed ammoniacal nitrogen in organic nitrogen fraction was 17% and the total Kjeldahl nitrogen was 9.00%, which was both also higher than those of CK. The basic indexes such as temperature, pH, EC and GI values all met the safety utilization standards. Three-dimensional fluorescence parallel factor analysis showed that the mixed addition of MnO2 and catechol could effectively reduce the mineralization and decomposition of nitrogen-containing organic matter in the initial compost stage, which could be the reason for obviously reducing the total amount of ammonia volatilization in the high temperature stage, and finally achieving nitrogen retention.
-
Key words:
- swine manure /
- aerobic composting /
- nitrogen transformation /
- MnO2 /
- catechol
-
表 1 堆肥原料基本理化性质
Table 1. Physiochemical properties of composting materials
材料 水分/% pH值 电导率/
(mS·cm−1)有机质/
%总凯氏氮/
(g·kg−1)总磷/
(g·kg−1)猪粪 78.53 7.39 3.91 67.24 39.58 20.5 木屑 11.45 7.65 0.23 89.6 4.4 0.09 -
[1] NASSER A E K, PAUL R, PAILLAT J M, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology. 2007, 98(14): 2619-2628. doi: 10.1016/j.biortech.2006.07.035 [2] BECK F B, SMÅRS S, JŐNSSON H, et al. SE—structures and environment: gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes[J]. Journal of Agricultural Engineering Research. 2001, 78(4): 423-430. doi: 10.1006/jaer.2000.0662 [3] WOLTER M, PRAYITNO S, SCHUCHARDT F. Greenhouse gas emission during storage of pig manure on a pilotscale[J]. Bioresource technology. 2005, 95(3): 235-244. [4] 刘玉婷. 禽粪好氧堆肥过程中氮素转化与菌群互作规律的研究[D]. 大连: 大连理工大学, 2018. [5] 李云. 添加剂对好氧堆肥过程中含氮气体排放和氮素化合物转化的影响[D]. 兰州: 甘肃农业大学, 2022. [6] WANG X, ZHANG W, GU J, et al. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost[J]. Environmental technology. 2016, 37(20): 2555-2563. doi: 10.1080/09593330.2016.1155650 [7] 李其胜, 殷小冬, 董青君, 等. 生物炭和微生物菌剂添加对菇渣好氧堆肥过程及其养分变化的影响[J]. 江苏农业科学, 2023, 51(11): 212-218. [8] 何远灵, 邢泽炳, 吴晓东. 生物炭对鸡粪好氧堆肥基质降解的影响与氨气排放研究 (英文)[J]. Agricultural Science & Technology, 2018, 19(3): 58-66. [9] 胡明勇, 刘强, 陈雄鹰, 等. 两种钙化合物在猪粪-稻草堆肥中除臭及保氮效果研究[J]. 湖南农业科学, 2009(7): 51-54. doi: 10.3969/j.issn.1006-060X.2009.07.018 [10] 李云, 邱慧珍, 张建斌, 等. 添加过磷酸钙和糠醛渣对好氧堆肥过程中氨气排放和氮素转化的影响[J]. 环境工程学报, 2021, 15(12): 3992-4000. doi: 10.12030/j.cjee.202110008 [11] SHAN G, LI W, GAO Y, et al. Additives for reducing nitrogen loss during composting: A review[J]. Journal of Cleaner Production. 2021, 307: 127308. doi: 10.1016/j.jclepro.2021.127308 [12] SCHAUB S M, LEONARD J J. Composting: An alternative waste management option for food processing industries[J]. Trends in food science & technology. 1996, 7(8): 263-268. [13] SÁNCHEZ M M A, ROIG A, CEGARRA J, et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting[J]. Bioresource Technology. 1999, 70(2): 193-201. doi: 10.1016/S0960-8524(99)00018-8 [14] STEVENSON F J. Humus chemistry: genesis, composition, reactions[M]. John Wiley & Sons, 1994. [15] QI H S, WANG J, ZHANG L Y, et al. Activation effect of catechol on biotic and abiotic factors of humus formation during chicken manure composting.[J]. Waste management. 2022, 149(15): 146-155. [16] WU J, QI H, HUANG X, et al. How does manganese dioxide affect humus formation during bio-composting of chicken manure and corn straw?[J]. Bioresource technology. 2018, 269: 169-178. doi: 10.1016/j.biortech.2018.08.079 [17] Qi H, WEI Z M, ZHANG Y, et al. Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials[J]. Waste Management. 2019, 87: 326-334. doi: 10.1016/j.wasman.2019.02.022 [18] SHINDO H. HUANG P M. Significance of Mn (IV)oxide in abiotic formation of organic nitrogen complexes in natural environments[J]. Nature. 1984, 308: 57-58. doi: 10.1038/308057a0 [19] YUE D, LU X, et al. Role of ferric oxide in abiotic humification enhancement of organic matter[J]. Journal of Material Cycles and Waste Management. 2017, 19(1): 585-591. doi: 10.1007/s10163-015-0435-2 [20] QI G, YUE D, FUKUSHIMA M, et al. Enhanced humification by carbonated basic oxygen furnace steel slag–II. Process characterization and the role of inorganic components in the formation of humic-like substances[J]. Bioresource technology. 2012, 114: 637-643. doi: 10.1016/j.biortech.2012.03.064 [21] SHINDO H. HUANG P M. Role of Mn (IV)oxide in abiotic formation of humic substances in the environment[J]. Nature. 1982, 298(5872): 363-365. doi: 10.1038/298363a0 [22] 曹云, 黄红英, 吴华山, 等. 畜禽粪便超高温堆肥产物理化性质及其对小白菜生长的影响[J]. 农业工程学报, 2018, 34(12): 251-257. doi: 10.11975/j.issn.1002-6819.2018.12.031 [23] 张丽. 利用沼液培养微藻净化沼气的研究[D]. 上海: 复旦大学, 2014. [24] 蔡函臻, 宁西翠, 王权, 等. 碱性固体对污泥的调质堆肥影响及产品对土壤的改良潜力[J]. 环境科学, 2016, 37(12): 4848-4856. doi: 10.13227/j.hjkx.201606104 [25] ZHAO X, WEI Y, FAN Y, et al. Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting[J]. Bioresource Technology. 2018, 267: 378. doi: 10.1016/j.biortech.2018.07.060 [26] KEENEY D R, BREMNER J M. Effect of Cultivation on the Nitrogen Distribution in Soils1[J]. Soil Science Society of America Journal. 1964, 28(5): 653-656. doi: 10.2136/sssaj1964.03615995002800050022x [27] ZHOU H X, ZHAO Y, YANG H Y, et al. Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting[J]. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2018, 262: 221-228. [28] WANG Z, AWASTHI M K. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology. 2016, 220: 297-304. doi: 10.1016/j.biortech.2016.08.081 [29] 李季. 堆肥工程实用手册[M]. 彭生平. 北京: 化学工业出版社, 2011. [30] BERNAL M P, ALBURQUERQUE A, MORAL R. Composting of animal manures and chemical criteria forcompost maturity assessment: a review[JJ]. Bioresource Technology, 2009, 100 (22): 5444-5453. [31] 贾兴永. 生物炭及翻堆频率对鸡粪堆肥过程中温室气体排放的影响[D]. 北京: 中国农业大学, 2015. [32] HACHICHA R, REKIK O, HACHICHA S, et al. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity[J]. Chemosphere. 2012, 88(6): 677-682. doi: 10.1016/j.chemosphere.2012.03.053 [33] 孟利强. 碳源调控污泥堆肥氮素转化与含氮气体释放生物机制研究[D]. 哈尔滨工业大学, 2019. [34] WANG Q, AWASTHI M K, ZHAO J, et al. Utilization of medical stone to improve the composition and quality of dissolved organic matter in composted pig manure[J]. Journal of cleaner production. 2018, 197: 472-478. doi: 10.1016/j.jclepro.2018.06.230 [35] ZHANG S, WANG J, CHEN X, et al. Industrial-scale food waste composting: Effects of aeration frequencies on oxygen consumption, enzymatic activities and bacterial community succession[J]. Bioresource Technology. 2021, 320: 124357. doi: 10.1016/j.biortech.2020.124357 [36] CUI H, ZHAO Y, CHEN Y, et al. Assessment of phytotoxicity grade during composting based on EEM/PARAFAC combined with projection pursuit regression[J]. Journal of Hazardous Materials. 2017, 326(15): 10-17. [37] 李新添. 有机固体废弃物堆肥中腐殖化过程强化及细菌群落结构演替的研究[D]. 南宁: 广西大学, 2021. [38] 杜梦菲. 畜禽粪便堆肥甲烷生成-氧化特征及其影响因素研究[D]. 哈尔滨工业大学, 2020. [39] 陈孟立. 蔬菜废弃物堆肥过程中有机氮转化的机理[D]. 杨陵: 西北农林科技大学, 2019. [40] Flaig W. Chemistry of humic substances in relation to coalification[M]. 1996: 58-68. [41] 钱靖华. 畜禽粪便堆肥高效固氮添加剂研究[J]. 安徽农学通报, 2021, 27(1): 134-136. doi: 10.3969/j.issn.1007-7731.2021.01.052 [42] 梁晓烽, 王虹, 李玉中等. 沼液与园林废弃物共堆肥下的氮素转化及其微生物作用机制[J/OL]. 应用生态学报: 1-11. (3-08-09 3-08-09]. [43] 卢佳伟, 王铭泽, 汪棋, 等. 辅料及微生物菌剂对羊粪好氧堆肥腐熟度的影响[J]. 中国农学通报, 2021, 37(15): 39-46. [44] ZHANG F, GU W, XU P, et al. Effects of S and FeSO4 agents on nitrogen conservation in aerobic composting of chicken manure[J]. Chinese journal of environmental engineering. 2011, 5(10): 2347-2352. [45] JUAN M, KAI J, LIANGHU S, et al. Effects of FeSO4 dosage on nitrogen loss and humification during the composting of cow dung and corn straw[J]. Bioresource Technology. 2021, 341: 125867. doi: 10.1016/j.biortech.2021.125867 [46] LHADI E K, TAZI H, AVLAJ M, et al. Organic matter evolution during co-composting of the organic fraction of municipal waste and poultry manure[J]. Bioresource technology. 2006, 97(16): 2117-2123. doi: 10.1016/j.biortech.2005.09.012 [47] ZUCCONI F, MONACO A, et al. Biological evaluation of compost maturity[J]. Biocycle. 1981, 22: 27-29. [48] KELLY K R, STEVENSON F J. Forms and nature of organic N in soil[J]. Fertilizer research. 1995, 42: 1-11. doi: 10.1007/BF00750495 [49] 徐阳春, 沈其荣, 茆泽圣. 长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响[J]. 中国农业科学, 2002, 35(4): 403-409. doi: 10.3321/j.issn:0578-1752.2002.04.011 [50] WARREN C R. Organic N molecules in the soil solution: what is known, what is unknown and the path forwards[J]. Plant and Soil. 2014, 375(1): 1-19. [51] ZHANG W, LIU J, ZHANG L, et al. A fluorescence nanosensor for lipase activity: enzyme-regulated quantum dots growth in situ[J]. RSC Advances. 2015, 5(89): 73051-73057. doi: 10.1039/C5RA08902F [52] CHEN X, LIU R, HAO J, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresource Technology. 2018, 271(1): 482-486. [53] LU Q, ZHAOY, GAO X, et al. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting[J]. Bioresource Technology. 2018, 256(5): 128-136. [54] JULIANA D A, CHRISTINE M, MICHAEL S, et al. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core[J]. Climate of the Past. 2017, 13(5): 1-15. [55] KIM J, KIM Y, KANG H W, et al. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter[J]. Marine Chemistry. 2020, 218: 103720. doi: 10.1016/j.marchem.2019.103720