[1] NASSER A E K, PAUL R, PAILLAT J M, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology. 2007, 98(14): 2619-2628. doi: 10.1016/j.biortech.2006.07.035
[2] BECK F B, SMÅRS S, JŐNSSON H, et al. SE—structures and environment: gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes[J]. Journal of Agricultural Engineering Research. 2001, 78(4): 423-430. doi: 10.1006/jaer.2000.0662
[3] WOLTER M, PRAYITNO S, SCHUCHARDT F. Greenhouse gas emission during storage of pig manure on a pilotscale[J]. Bioresource technology. 2005, 95(3): 235-244.
[4] 刘玉婷. 禽粪好氧堆肥过程中氮素转化与菌群互作规律的研究[D]. 大连: 大连理工大学, 2018.
[5] 李云. 添加剂对好氧堆肥过程中含氮气体排放和氮素化合物转化的影响[D]. 兰州: 甘肃农业大学, 2022.
[6] WANG X, ZHANG W, GU J, et al. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost[J]. Environmental technology. 2016, 37(20): 2555-2563. doi: 10.1080/09593330.2016.1155650
[7] 李其胜, 殷小冬, 董青君, 等. 生物炭和微生物菌剂添加对菇渣好氧堆肥过程及其养分变化的影响[J]. 江苏农业科学, 2023, 51(11): 212-218.
[8] 何远灵, 邢泽炳, 吴晓东. 生物炭对鸡粪好氧堆肥基质降解的影响与氨气排放研究 (英文)[J]. Agricultural Science & Technology, 2018, 19(3): 58-66.
[9] 胡明勇, 刘强, 陈雄鹰, 等. 两种钙化合物在猪粪-稻草堆肥中除臭及保氮效果研究[J]. 湖南农业科学, 2009(7): 51-54. doi: 10.3969/j.issn.1006-060X.2009.07.018
[10] 李云, 邱慧珍, 张建斌, 等. 添加过磷酸钙和糠醛渣对好氧堆肥过程中氨气排放和氮素转化的影响[J]. 环境工程学报, 2021, 15(12): 3992-4000. doi: 10.12030/j.cjee.202110008
[11] SHAN G, LI W, GAO Y, et al. Additives for reducing nitrogen loss during composting: A review[J]. Journal of Cleaner Production. 2021, 307: 127308. doi: 10.1016/j.jclepro.2021.127308
[12] SCHAUB S M, LEONARD J J. Composting: An alternative waste management option for food processing industries[J]. Trends in food science & technology. 1996, 7(8): 263-268.
[13] SÁNCHEZ M M A, ROIG A, CEGARRA J, et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting[J]. Bioresource Technology. 1999, 70(2): 193-201. doi: 10.1016/S0960-8524(99)00018-8
[14] STEVENSON F J. Humus chemistry: genesis, composition, reactions[M]. John Wiley & Sons, 1994.
[15] QI H S, WANG J, ZHANG L Y, et al. Activation effect of catechol on biotic and abiotic factors of humus formation during chicken manure composting.[J]. Waste management. 2022, 149(15): 146-155.
[16] WU J, QI H, HUANG X, et al. How does manganese dioxide affect humus formation during bio-composting of chicken manure and corn straw?[J]. Bioresource technology. 2018, 269: 169-178. doi: 10.1016/j.biortech.2018.08.079
[17] Qi H, WEI Z M, ZHANG Y, et al. Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials[J]. Waste Management. 2019, 87: 326-334. doi: 10.1016/j.wasman.2019.02.022
[18] SHINDO H. HUANG P M. Significance of Mn (IV)oxide in abiotic formation of organic nitrogen complexes in natural environments[J]. Nature. 1984, 308: 57-58. doi: 10.1038/308057a0
[19] YUE D, LU X, et al. Role of ferric oxide in abiotic humification enhancement of organic matter[J]. Journal of Material Cycles and Waste Management. 2017, 19(1): 585-591. doi: 10.1007/s10163-015-0435-2
[20] QI G, YUE D, FUKUSHIMA M, et al. Enhanced humification by carbonated basic oxygen furnace steel slag–II. Process characterization and the role of inorganic components in the formation of humic-like substances[J]. Bioresource technology. 2012, 114: 637-643. doi: 10.1016/j.biortech.2012.03.064
[21] SHINDO H. HUANG P M. Role of Mn (IV)oxide in abiotic formation of humic substances in the environment[J]. Nature. 1982, 298(5872): 363-365. doi: 10.1038/298363a0
[22] 曹云, 黄红英, 吴华山, 等. 畜禽粪便超高温堆肥产物理化性质及其对小白菜生长的影响[J]. 农业工程学报, 2018, 34(12): 251-257. doi: 10.11975/j.issn.1002-6819.2018.12.031
[23] 张丽. 利用沼液培养微藻净化沼气的研究[D]. 上海: 复旦大学, 2014.
[24] 蔡函臻, 宁西翠, 王权, 等. 碱性固体对污泥的调质堆肥影响及产品对土壤的改良潜力[J]. 环境科学, 2016, 37(12): 4848-4856. doi: 10.13227/j.hjkx.201606104
[25] ZHAO X, WEI Y, FAN Y, et al. Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting[J]. Bioresource Technology. 2018, 267: 378. doi: 10.1016/j.biortech.2018.07.060
[26] KEENEY D R, BREMNER J M. Effect of Cultivation on the Nitrogen Distribution in Soils1[J]. Soil Science Society of America Journal. 1964, 28(5): 653-656. doi: 10.2136/sssaj1964.03615995002800050022x
[27] ZHOU H X, ZHAO Y, YANG H Y, et al. Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting[J]. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2018, 262: 221-228.
[28] WANG Z, AWASTHI M K. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology. 2016, 220: 297-304. doi: 10.1016/j.biortech.2016.08.081
[29] 李季. 堆肥工程实用手册[M]. 彭生平. 北京: 化学工业出版社, 2011.
[30] BERNAL M P, ALBURQUERQUE A, MORAL R. Composting of animal manures and chemical criteria forcompost maturity assessment: a review[JJ]. Bioresource Technology, 2009, 100 (22): 5444-5453.
[31] 贾兴永. 生物炭及翻堆频率对鸡粪堆肥过程中温室气体排放的影响[D]. 北京: 中国农业大学, 2015.
[32] HACHICHA R, REKIK O, HACHICHA S, et al. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity[J]. Chemosphere. 2012, 88(6): 677-682. doi: 10.1016/j.chemosphere.2012.03.053
[33] 孟利强. 碳源调控污泥堆肥氮素转化与含氮气体释放生物机制研究[D]. 哈尔滨工业大学, 2019.
[34] WANG Q, AWASTHI M K, ZHAO J, et al. Utilization of medical stone to improve the composition and quality of dissolved organic matter in composted pig manure[J]. Journal of cleaner production. 2018, 197: 472-478. doi: 10.1016/j.jclepro.2018.06.230
[35] ZHANG S, WANG J, CHEN X, et al. Industrial-scale food waste composting: Effects of aeration frequencies on oxygen consumption, enzymatic activities and bacterial community succession[J]. Bioresource Technology. 2021, 320: 124357. doi: 10.1016/j.biortech.2020.124357
[36] CUI H, ZHAO Y, CHEN Y, et al. Assessment of phytotoxicity grade during composting based on EEM/PARAFAC combined with projection pursuit regression[J]. Journal of Hazardous Materials. 2017, 326(15): 10-17.
[37] 李新添. 有机固体废弃物堆肥中腐殖化过程强化及细菌群落结构演替的研究[D]. 南宁: 广西大学, 2021.
[38] 杜梦菲. 畜禽粪便堆肥甲烷生成-氧化特征及其影响因素研究[D]. 哈尔滨工业大学, 2020.
[39] 陈孟立. 蔬菜废弃物堆肥过程中有机氮转化的机理[D]. 杨陵: 西北农林科技大学, 2019.
[40] Flaig W. Chemistry of humic substances in relation to coalification[M]. 1996: 58-68.
[41] 钱靖华. 畜禽粪便堆肥高效固氮添加剂研究[J]. 安徽农学通报, 2021, 27(1): 134-136. doi: 10.3969/j.issn.1007-7731.2021.01.052
[42] 梁晓烽, 王虹, 李玉中等. 沼液与园林废弃物共堆肥下的氮素转化及其微生物作用机制[J/OL]. 应用生态学报: 1-11. (3-08-09 3-08-09].
[43] 卢佳伟, 王铭泽, 汪棋, 等. 辅料及微生物菌剂对羊粪好氧堆肥腐熟度的影响[J]. 中国农学通报, 2021, 37(15): 39-46.
[44] ZHANG F, GU W, XU P, et al. Effects of S and FeSO4 agents on nitrogen conservation in aerobic composting of chicken manure[J]. Chinese journal of environmental engineering. 2011, 5(10): 2347-2352.
[45] JUAN M, KAI J, LIANGHU S, et al. Effects of FeSO4 dosage on nitrogen loss and humification during the composting of cow dung and corn straw[J]. Bioresource Technology. 2021, 341: 125867. doi: 10.1016/j.biortech.2021.125867
[46] LHADI E K, TAZI H, AVLAJ M, et al. Organic matter evolution during co-composting of the organic fraction of municipal waste and poultry manure[J]. Bioresource technology. 2006, 97(16): 2117-2123. doi: 10.1016/j.biortech.2005.09.012
[47] ZUCCONI F, MONACO A, et al. Biological evaluation of compost maturity[J]. Biocycle. 1981, 22: 27-29.
[48] KELLY K R, STEVENSON F J. Forms and nature of organic N in soil[J]. Fertilizer research. 1995, 42: 1-11. doi: 10.1007/BF00750495
[49] 徐阳春, 沈其荣, 茆泽圣. 长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响[J]. 中国农业科学, 2002, 35(4): 403-409. doi: 10.3321/j.issn:0578-1752.2002.04.011
[50] WARREN C R. Organic N molecules in the soil solution: what is known, what is unknown and the path forwards[J]. Plant and Soil. 2014, 375(1): 1-19.
[51] ZHANG W, LIU J, ZHANG L, et al. A fluorescence nanosensor for lipase activity: enzyme-regulated quantum dots growth in situ[J]. RSC Advances. 2015, 5(89): 73051-73057. doi: 10.1039/C5RA08902F
[52] CHEN X, LIU R, HAO J, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresource Technology. 2018, 271(1): 482-486.
[53] LU Q, ZHAOY, GAO X, et al. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting[J]. Bioresource Technology. 2018, 256(5): 128-136.
[54] JULIANA D A, CHRISTINE M, MICHAEL S, et al. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core[J]. Climate of the Past. 2017, 13(5): 1-15.
[55] KIM J, KIM Y, KANG H W, et al. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter[J]. Marine Chemistry. 2020, 218: 103720. doi: 10.1016/j.marchem.2019.103720