-
煤矸石是煤炭开采过程中的大宗工业固废,目前处置方式以堆存为主,存在占用土地、生态破坏、地下水污染等问题。煤矿瓦斯在经燃烧利用所产中低温烟气余热未得到有效利用,造成能源的大量浪费。
煤矸石在矿物组成上与土壤具有高度的相似性,但因其粒径粗大、保水性能差等原因,煤矸石大规模生态化利用受限。魏忠义和王秋兵[1]研究认为微粒含量上升即持水率提高是煤矸石复垦的先决条件,胡振琪等[2]认为矿区复垦重点在于土壤性能综合提升。煤矸石颗粒粉化可提升基质持水能力,实现基质成土的初期演替。自然环境中,煤矸石等岩石颗粒的风化粉化主要由温度和水分驱动,但自然扰动强度小、频率低,煤矸石风化进程缓慢。蔡毅等[3]对淮南矿区煤矸石进行采样分析,结果表明风化2~12年的煤矸石持水率才具有较为明显的提升。张清峰等[4]研究表明煤矸石经36个月风化后含水率趋于稳定并超过10%。针对煤矸石风化粉化,梁冰等[5]利用木霉菌对煤矸石进行分解改良,作用30 d后,0.5 mm以下微粒上升了5%左右,时间成本较高;尚志等[6]、ZHANG等[7]采用冻融循环提高煤矸石黏粒细砂含量,研究表明冻融对土壤矿物化学性能改变不大,但对其粒径粉化效果显著,但冻融循环受环境制约难以大规模推广。张素等[8]认为干湿/冷热扰动有利于基质微粒含量的快速提升。通过瓦斯烟气余热利用对煤矸石进行强化风化处理,增强环境扰动的强度和频率,有望实现煤矸石的快速粉化及矿物转化,均衡其土壤学要素,达到综合性能的提升,开辟煤矸石原位风化成土的新途径。所以将煤矸石与瓦斯烟气余热进行协同处理处置,实现资源与能源的高效利用,是煤炭企业绿色可持续发展的重要课题。
针对煤矸石粒径粗大、持水能力薄弱的问题,本研究利用瓦斯烟气余热,强化煤矸石干湿/冷热的交替循环,加速煤矸石结构风化粉化,促进煤矸石的矿物分解与重构,提升风化产物的透气保墒性能,并通过植物生长考核其风化产物的生态化应用效果,以实现煤矸石与瓦斯烟气余热的资源能源的高效利用。
基于瓦斯燃烧余热利用的煤矸石快速风化成土
Rapid weathering and pulverization of coal gangue based on gas waste heat utilization
-
摘要: 基于瓦斯燃烧的余热利用,对煤矸石进行高频率的干湿/冷热交替处理,加速煤矸石结构风化粉化,提升风化产物的保墒-透气-蓄肥等土壤学性能。结果表明煤矸石在50 ℃下经30次干湿/冷热交替后粒径显著下降,粗砂 (5~10 mm) 比例下降43%,细砂 (<1 mm) 含量上升35%,持水率可达12.78%,达到砂土持水标准,持水率、微粒含量、毛管孔隙度与循环次数呈正比;颗粒粉化主要受矿物溶出产生溶蚀裂隙、矿物重构并干燥产生盐结晶强化裂隙涨裂,以及黏土矿物的不均匀性膨胀/收缩的影响;风化产物种植紫花苜蓿,发芽率在80%以上,发芽时间、茎长等优于低扰动样品。本研究结果可为瓦斯与煤矸石的能源化、资源化协同利用提供参考。Abstract: Utilizing waste heat generated from gas combustion, this study explored the rapid weathering and pulverization of coal gangue through high-frequency dry/wet/cool/hot alternating treatments. The objective was to enhance the soil properties of the weathered products, including moisture retention, ventilation, and fertilizer storage. Experimental results demonstrated that after 30 cycles of dry/wet/hot/cold alternating treatment at 50 ℃, the particle size of coal gangue significantly decreases, with a corresponding 43% reduction in coarse sand (5~10 mm) content and a 35% increase in fine sand (<1 mm) content. The water holding rate reached 12.78%, meeting the standards for moisture retention in sandy soil. Moreover, the water holding rate, particle content, and capillary porosity exhibited a proportional relationship with and number of cycles. Particle pulverization primarily resulted from mineral dissolution, which generated etching cracks, mineral restructuring under dry conditions leading to salt crystallization-induced crack strengthening, and clay minerals' uneven expansion/contraction. Planting alfalfa using the weathered products yielded a germination rate of over 80%, surpassing that of low-disturbance samples in terms of germination time and stem length. This research provides valuable insights for the collaborative utilization of gas and coal gangue, aiming to facilitate their energy and resource co-utilization.
-
表 1 煤矸石样品初始粒径分布
Table 1. The initial particle size distribution of coal gangue samples
5~10 mm 2~5 mm 1~2 mm 0~1 mm 68%±5% 6%±2% 12%±2% 14%±2% 表 2 堆浸液结晶盐XRF检测结果
Table 2. XRF detection results of heap leach liquid crystallization salt
mg·kg−1 样品编号 K Ca S Fe R1 2 371 9 557 160.4×103 1 734 R2 4 203 7 396 142.3×103 1 458 R3 820 18.1·103 96.5×103 1 487 表 3 干湿/冷热交替处理前后煤矸石样品粉化粒径分布
Table 3. Pulverized particle size distribution of coal gangue samples before and after dry-wet/cold-heat alternate treatment
粒径
分布/mmCG3 CG2 CG1 处理前/
%处理后/
%处理前/
%处理后/
%处理前/
%处理后/
%5~10 71.5 28 66.1 24.5 63.1 34.2 2~5 4.8 7.2 9.5 15 7.1 9.3 1~2 12.2 18 12.2 15.6 15 18.5 0~1 11.5 46.9 12.4 44.9 15.2 38 表 4 紫花苜蓿生长指标
Table 4. Growth index of alfalfa
样品 发芽率/% 茎长/cm 发芽时间/d 原煤矸石 20 0.97 20 10次循环产物 40 1.76 20 20次循环产物 60 2.21 21 30次处理产物 85 2.64 18 -
[1] 魏忠义, 王秋兵. 大型煤矸石山植被重建的土壤限制性因子分析[J]. 水土保持研究, 2009, 16(1): 179-182. [2] 胡振琪, 肖武, 赵艳玲. 再论煤矿区生态环境“边采边复”[J]. 煤炭学报, 2020, 45(1): 351-359. doi: 10.13225/j.cnki.jccs.YG19.1694 [3] 蔡毅, 严家平, 陈孝杨, 等. 表生作用下煤矸石风化特征研究——以淮南矿区为例[J]. 中国矿业大学学报, 2015, 44(5): 937-943+958. doi: 10.13247/j.cnki.jcumt.000398 [4] 张清峰, 王东权, 于广云, 等. 煤矸石风化对其物理力学性能影响的研究[J]. 中国矿业大学学报, 2019, 48(4): 768-774. doi: 10.13247/j.cnki.jcumt.001032 [5] 孔涛, 黄舒漫, 梁冰, 等. 木霉菌对煤矸石分解和绿化效果的影响[J]. 煤炭学报, 2018, 43(11): 3204-3211. doi: 10.13225/j.cnki.jccs.2018.0187 [6] 郭海桥, 程伟, 尚志, 等. 水分和冻融循环对酷寒矿区煤矸石风化崩解速率影响的定量研究[J]. 煤炭学报, 2019, 44(12): 3859-3864. doi: 10.13225/j.cnki.jccs.SH19.0797 [7] ZHANG Z, ZHAI J B, Melnikov Andrey, et al. Cryogenic soil—product of mineral weathering processes[J]. Minerals. 2022, 12: 805. [8] 张素, 郑学用, 熊东红, 等. 干湿交替对干热河谷冲沟发育区不同土壤崩解性的影响[J]. 水土保持学报, 2016, 30(2): 111-115+121. doi: 10.13870/j.cnki.stbcxb.2016.02.020 [9] SHEILA D. Application of particle size distribution analysis in evaluating the weathering in coal mine rejects and tailings[J]. Fuel Processing Technology. 2007, 88(3): 295-301. doi: 10.1016/j.fuproc.2006.10.013 [10] ZHANG C Y, Dai Z W, Tan W J, et al. Multiscale study of the deterioration of Sandstone in the three gorges reservoir area subjected to cyclic wetting-cooling and drying-heating[J]. Rock Mechanics and Rock Engineering. 2022, 55(9): 5619-37. doi: 10.1007/s00603-022-02929-1 [11] ZHOU W, CHENG J L, ZHANG G K, et al. Effects of wetting–drying cycles on the Breakage characteristics of slate rock grains[J]. Rock Mechanics and Rock Engineering. 2021, 54(12): 6323-6337. doi: 10.1007/s00603-021-02618-5 [12] HAYNES R, ZHOU Y F, WENG X T. Formulation and use of manufactured soils: A major use for organic and inorganic wastes[J]. Critical Reviews in Environmental Science and Technology. 2021, 52: 1-21. [13] 曹勇, 毕银丽, 宋子恒, 等. 物理改良对采矿伴生黏土水分和养分保持能力的影响[J]. 矿业研究与开发, 2021, 41(1): 116-121. doi: 10.13827/j.cnki.kyyk.2021.01.021 [14] ZHU H X, ZHANG Y, LI Z H, et al. Study on crack development and micro-pore mechanism of expansive soil improved by coal gangue under drying-wetting cycles[J]. Materials. 2021, 14(21): 6546. doi: 10.3390/ma14216546 [15] HUANG Y L, LI J M, SONG T Q, et al. Microstructure of coal gangue and precipitation of heavy metal elements[J]. Journal of Spectroscopy, 2017: 3128549. [16] MA D , KONG S B , LI Z H , et al. Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes[J]. Chemosphere, 2021, 282: 131163. [17] CHETTY D. Acid-Gangue interactions in heap leach operations: A Review of the role of mineralogy for predicting ore behaviour[J]. Minerals. 2018, 8(2): 47. doi: 10.3390/min8020047 [18] YUAN W, LIU X R, FU Y. Chemical thermodynamics and chemical kinetics analysis of sandstone dissolution under the action of dry-wet cycles in acid and alkaline environments[J]. Bulletin of Engineering Geology and the Environment. 2019, 78(2): 793-801. doi: 10.1007/s10064-017-1162-9 [19] NORDSTROM D K, BLOWES D W, PTACEK C J. Hydrogeochemistry and microbiology of mine drainage: An update[J]. Applied Geochemistry. 2015, 57: 3-16. doi: 10.1016/j.apgeochem.2015.02.008 [20] 高润东, 赵顺波, 李庆斌, 等. 干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J]. 土木工程学报, 2010, 43(2): 48-54. doi: 10.15951/j.tmgcxb.2010.02.018 [21] CELIK M Y, SERT M. Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing-thawing, and thermal shock[J]. Bulletin of Engineering Geology and the Environment. 2021, 79(7): 3751-3770. [22] AN W B, WANG L G, CHEN H. Mechanical Properties of Weathered Feldspar Sandstone afterExperiencing Dry-Wet Cycles[J]. Advances in Materials Science and Engineering, 2020: 6268945. [23] 梁冰, 曹强, 王俊光, 等. 弱崩解性软岩干-湿循环条件下崩解特性试验研究[J]. 中国安全科学学报, 2017, 27(8): 91-96. doi: 10.16265/j.cnki.issn1003-3033.2017.08.016 [24] YANG Y L, ZHANG T, LIU S Y, et al. Mechanical Properties and Deterioration Mechanism of Remolded Carbonaceous Mudstone Exposed to Wetting–Drying Cycles[J]. Rock Mechanics and Rock Engineering. 2022, 55(6): 3769-3780. doi: 10.1007/s00603-022-02833-8 [25] ZHANG Z Z, NIU Y X, SHANG X J, et al. Deterioration of Physical and Mechanical Properties of Rocks by Cyclic Drying and Wetting[J]. Geofluids, 2021: 6661107. [26] DEHESTANI A, HOSSEINI M, BEYDOKTI A T. Effect of wetting–drying cycles on mode I and mode II fracture toughness of sandstone in natural (pH=7) and acidic (pH=3) environments[J]. Theoretical and Applied Fracture Mechanics. 2020, 106: 102448. doi: 10.1016/j.tafmec.2019.102448