-
南水北调中线工程作为世界上最大的调水措施,旨在缓解华北地区的水资源短缺问题。中线干渠水源来自多条河流,含有大量的营养物质如氮、磷等,且水流速度较慢,容易形成静水区域,使得藻类容易生长繁殖。水流通过干渠断面的过程中由于流速减慢,水中携带的泥沙、沉积物等物质会逐渐沉淀,形成堆积在干渠底部的底泥[1]。藻类的释放是丹江口水库溶解性有机物(dissolved organic matter, DOM)的重要来源,直接关系到南水北调水源地的水质安全[2]。而作为污染物、养分和有机物的汇,底泥中的DOM可以提供比其上覆水更多的物质循环信息[3]。总干渠水质应达到《地表水环境质量标准》(GB3838-2002)的Ⅰ-Ⅱ类水标准。近年来主河道输水至北京和天津时DOM浓度有上升趋势,导致水质的重要有机污染指标化学需氧量(chemical oxygen demand, COD)上升,对京津两地的饮用水供应安全构成威胁[4]。
地表水中的DOM是由多糖、蛋白质和木质素等各种活性物质组成的复杂和非均相混合物[5]。在输送溶解性有机碳(dissolved organic carbon, DOC)的过程中,DOM会受到阳光照射而发生转化和降解,是从地表水中除去DOC的重要途径之一[6]。MORAN等[7-8]研究了地表水DOM在紫外辐射下的光漂白和光矿化作用,包括紫外吸光度和荧光强度的损失及DOC浓度的降低。但关于比较分析不同来源DOM光反应行为的研究较少。考虑到水环境中DOM来源的复杂性及其生态重要性,需要更全面地了解控制其转化的行为。
北京段清河位于中线的末端,来水已经流经了中线所有的区域,可以提供水质累积影响的有价值的信息。本文以南水北调终点清河段的水、底泥中DOM及微囊藻衍生的I-DOM和E-DOM为研究对象,利用三维荧光光谱和紫外可见吸收光谱技术比较了不同来源DOM光学性质和光降解行为的差异性,对控制输水过程DOM的积累具有重要价值。
南水北调中线清河溶解性有机物的光降解行为
Photodegradation behavior of dissolved organic matter in Qinghe river of middle route of South-to-North Water Diversion Project
-
摘要: 溶解性有机物(dissolved organic matter, DOM)在水环境中普遍存在,其光降解行为与种类和来源密切相关。近年来,南水北调中线工程沿线中DOM含量过高问题逐渐引起了人们对饮用水水源水质的关注。利用三维荧光光谱与紫外可见吸收光谱表征了清河段DOM在水(Water DOM, W-DOM)、底泥(sediment-derived DOM, S-DOM)、藻胞内(intracellular DOM, I-DOM)和胞外(extracellular DOM, E-DOM)这4种典型来源中的光学性质和光降解行为。结果表明,W-DOM的主要来源是藻类代谢产生的E-DOM;S-DOM的主要形成原因是藻细胞破裂释放I-DOM。DOM的光漂白主要发生在紫外区,且UV-B波段的光漂白效率大于UV-A波段。W-DOM、S-DOM和E-DOM中有色DOM(chromophoric DOM, CDOM)的降解率基本相同,为40%~50%;I-DOM中CDOM降解率相对较低,约为25%。光照可以将W-DOM、S-DOM和E-DOM中复杂的大分子物质分解成结构简单的小分子物质。CDOM中类腐殖质的光降解率比类蛋白质更高,W-DOM、S-DOM和E-DOM中CDOM与类腐殖质的光降解速率在相同时间下基本保持一致;S-DOM和E-DOM中CDOM与类蛋白质的光降解速率在相同时间下基本保持一致。以上结果反映了太阳辐射对水环境中DOM的转化和去除机理,为河流水质保护提供了理论依据。
-
关键词:
- 溶解性有机物(DOM) /
- 光漂白 /
- 紫外可见吸收光谱 /
- 三维荧光光谱
Abstract: Dissolved organic matter (DOM) is ubiquitous in water environment, and its photodegradation behavior is closely related to species and sources. In recent years, the problem of high content of DOM along the Middle Route Project of South-to-North Water Diversion has gradually aroused people's attention to the quality of drinking water sources. In this study, three-dimensional fluorescence spectroscopy and UV-visible absorption spectroscopy were used to characterize the optical properties and photodegradation behavior of DOM from four typical origins, i.e., water (W-DOM), sediment-derived (S-DOM) and algae-derived intracellular (I-DOM) and extracellular DOM (E-DOM) in Qinghe river section. The results showed that the main origin of W-DOM was E-DOM produced by the metabolism of algae. The main reason for the formation of S-DOM was the release of I-DOM by algal cell rupture. The photobleaching of DOM mainly occurred in the ultraviolet region, and the photobleaching efficiency of UV-B band was higher than that of UV-A band. The degradation rates of chromophoric DOM (CDOM) in W-DOM, S-DOM and E-DOM were basically same, ranging from 40% to 50%. The degradation rate of CDOM in I-DOM was relatively low and about 25%. Irradiation could decompose complex macromolecules in W-DOM, S-DOM and E-DOM into small molecules with simple structure. The photodegradation ratio of humic-like substances in CDOM was higher than that of protein-like substances. The photodegradation rates of CDOM and humic-like substances in W-DOM, S-DOM and E-DOM were basically consistent at the same time; the photodegradation rates of CDOM and protein-like substances in S-DOM and E-DOM were basically consistent at the same time. The experimental results show the transformation and removal mechanism of DOM in water environment by solar radiation, which provides a theoretical basis for the protection of river water quality. -
表 1 DOM样品荧光组分的含量和荧光光谱参数
Table 1. Content of fluorescent components and fluorescence spectra parameters of DOM samples
样品名称 荧光峰强度 FI HIX BIX B T A M C W-DOM 67.23 99.68 187.04 155.82 158.82 2.18 0.80 1.01 S-DOM 138.53 116.99 53.24 221.10 60.69 2.45 0.48 3.62 I-DOM 239.13 542.06 240.33 193.62 126.29 2.79 0.53 0.70 E-DOM 103.90 239.01 441.23 151.60 212.18 2.16 0.82 1.07 表 2 CDOM的光降解动力学拟合结果
Table 2. Fitting results of photodegradation kinetics of CDOM
样品名称 拟合方程 R2 光降解速率常数/d−1 W-DOM Y=0.46exp(−0.66x)+0.53 0.99 0.66 S-DOM Y=0.43exp(−0.44x)+0.57 0.99 0.44 E-DOM Y=0.46exp(−0.84x)+0.53 0.99 0.84 -
[1] WANG C, ZHANG H, LEI P, et al. Evidence on the causes of the rising levels of CODMn along the middle route of the South-to-North Diversion Project in China: The role of algal dissolved organic matter[J]. Journal of Environmental Sciences, 2022, 113: 281-290. doi: 10.1016/j.jes.2021.06.003 [2] YAN X Y, ZHANG Y, LI Y Y, et al. Hydrologic and physicochemical factors co-drive seasonal changes of phytoplankton during dynamic water diversion processes in the Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2021, 33(5): 1350-1363. doi: 10.18307/2021.0505 [3] TAO Y Q, LU J. Occurrence of total phosphorus in surface sediments of Chinese lakes and its driving factors and implications[J]. Journal of Hydrology, 2020, 580: 1-7. [4] 范傲翔, 王智鹏, 王超, 等. 南水北调中线总干渠水体耗氧特征及成因[J]. 环境科学学报, 2020, 40(3): 871-879. doi: 10.13671/j.hjkxxb.2019.0423 [5] AIKEN G R, GILMOUR C C, KRABBENHOFT D P, et al. Dissolved organic matter in the Florida Everglades: Implications for ecosystem restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(S1): 217-248. [6] WARD C P, CORY R M. Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters[J]. Environmental Science-Processes & Impacts, 2020, 22(5): 1214-1223. [7] MORAN M A, SHELDON W M, ZEPP R G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter[J]. Limnology and Oceanography, 2000, 45(6): 1254-1264. doi: 10.4319/lo.2000.45.6.1254 [8] MORAN M A, ZEPP R G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter[J]. Limnology and Oceanography, 1997, 42(6): 1307-1316. doi: 10.4319/lo.1997.42.6.1307 [9] ZHANG L, SUN Q X, DOU Q H, et al. The molecular characteristics of dissolved organic matter in urbanized river sediments and their environmental impact under the action of microorganisms[J]. Science of the Total Environment, 2022, 827: 1-11. [10] YANG C H, LIU Y Z, ZHU Y X, et al. Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy[J]. Marine Pollution Bulletin, 2016, 104(1/2): 113-120. [11] LI L, GAO N Y, DENG Y, et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds[J]. Water Research, 2012, 46(4): 1233-1240. doi: 10.1016/j.watres.2011.12.026 [12] 巩瑶, 宋贵生. 珠江口溶解有机物光化学降解活性[J]. 海洋环境科学, 2021, 40(5): 690-698. doi: 10.12111/j.mes.20200255 [13] DRYER D J, KORSHIN G V, FABBRICINO M. In situ examination of the protonation behavior of fulvic acids using differential absorbance spectroscopy[J]. Environmental Science & Technology, 2008, 42(17): 6644-6649. [14] FICHOT C G, BENNER R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters[J]. Geophysical Research Letters, 2011, 38(3): 1-5. [15] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. [16] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955 [17] INAMDAR S, FINGER N, SINGH S, et al. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA[J]. Biogeochemistry, 2012, 108(1/2/3): 55-76. [18] 曹佳锐, 龚可杨, 别宇静, 等. 水土保持林恢复土壤可溶性碳氮组分动态与三维荧光特征分析[J]. 生态学报, 2021, 41(19): 7679-7688. [19] COBLE P G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color[J]. Chemical Reviews, 2007, 107(2): 402-418. doi: 10.1021/cr050350+ [20] KIM M-S, LIM B R, JEON P, et al. Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes[J]. Water Research, 2023, 1-14. [21] GRANELI W, LINDELL M, TRANVIK L. Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content[J]. Limnology and Oceanography, 1996, 41(4): 698-706. doi: 10.4319/lo.1996.41.4.0698 [22] CHEN M L, JAFFE R. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland[J]. Water Research, 2014, 61: 181-190. doi: 10.1016/j.watres.2014.03.075 [23] CORY R M, KLING G W. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum[J]. Limnology and Oceanography Letters, 2018, 3(3): 102-116. doi: 10.1002/lol2.10060 [24] FICHOT C G, BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins[J]. Limnology and Oceanography, 2012, 57(5): 1453-1466. doi: 10.4319/lo.2012.57.5.1453 [25] SONG G S, Li Y J, Hu S Z, et al. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity[J]. Environmental Science: Processes & Impacts, 2017, 19(6): 861-873. [26] BERTILSSON S, TRANVIK L J. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton[J]. Limnology and Oceanography, 1998, 43(5): 885-895. doi: 10.4319/lo.1998.43.5.0885