机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能

高凤如, 郭洪梅, 胡俊, 邱一凡. 机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能[J]. 环境工程学报, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061
引用本文: 高凤如, 郭洪梅, 胡俊, 邱一凡. 机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能[J]. 环境工程学报, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061
GAO Fengru, GUO Hongmei, HU Jun, QIU Yifan. Performance enhancement of Cr(Ⅵ) reduction for Fe/Fe3O4 by mechanical milling[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061
Citation: GAO Fengru, GUO Hongmei, HU Jun, QIU Yifan. Performance enhancement of Cr(Ⅵ) reduction for Fe/Fe3O4 by mechanical milling[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061

机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能

    作者简介: 高凤如 (1988—) ,女,硕士,讲师, sdmygao@163.com
    通讯作者: 胡俊(1988—),男,博士,副研究员,hujun1988@zjut.edu.cn
  • 基金项目:
    山东省生猪产业技术体系(SDAIT-08-08);潍坊高新区2021年科技惠民计划项目(2021KJHM19);潍坊市科技发展计划项目(2022ZJ1226);浙江省自然科学基金资助项目(LGF22E080027)
  • 中图分类号: X703

Performance enhancement of Cr(Ⅵ) reduction for Fe/Fe3O4 by mechanical milling

    Corresponding author: HU Jun, hujun1988@zjut.edu.cn
  • 摘要: Fe/Fe3O4作为机械球磨助磨剂可高效去除含卤污染物,但也面临着助磨剂尾料资源化利用的难题。机械球磨后的Fe/Fe3O4尾料具有良好的Cr(Ⅵ)还原性能。本研究基于尾料资源化利用和高性能材料开发的双重考虑,通过球磨模拟制备具有高Cr(Ⅵ)还原性能的Fe/Fe3O4材料。结果表明,机械球磨强化了Fe/Fe3O4材料的Cr(Ⅵ)还原性能,Cr(Ⅵ)去除率由26.1%提升至91.3%。机械球磨主要是通过促进Fe(Ⅱ)的生成和Fe释放电子的传递强化Cr(Ⅵ)还原。采用球磨Fe/Fe3O4还原Cr(Ⅵ)时,Fe(Ⅱ)的高生成量说明机械球磨促进了Fe(Ⅱ)的生成,而Fe(Ⅲ) 的高生成量和pH的大幅上升说明Fe(Ⅱ)转化为Fe(Ⅲ)。利用邻菲啰啉淬灭Fe(Ⅱ),使得球磨Fe/Fe3O4材料对Cr(Ⅵ) 的去除率降至41.8%,这表明Fe(Ⅱ)对Cr(Ⅵ) 还原起主要作用。过量的氧气和过长的球磨时间可削弱球磨Fe/Fe3O4的Cr(Ⅵ)还原性能,最佳球磨条件为氮气氛围、球磨30 min;Cr(Ⅵ)去除效果与球磨Fe/Fe3O4投加量呈正相关,而与初始pH呈负相关。
  • 加载中
  • 图 1  Fe、Fe3O4和Fe/Fe3O4材料的Cr()还原性能对比图

    Figure 1.  Comparison of the performance of Fe、Fe3O4 and Fe/Fe3O4 materials on Cr(Ⅵ) reduction

    图 2  球磨Fe/Fe3O4材料的XRD和XPS表征图

    Figure 2.  XRD patterns and XPS spectra of the milled Fe/Fe3O4

    图 3  Cr()还原过程中Fe()和Fe()的生成

    Figure 3.  Production of Fe(Ⅱ) and Fe(Ⅲ) during the reduction of Cr(Ⅵ)

    图 4  Fe()淬灭前后的Cr()还原及pH变化

    Figure 4.  Reduction of Cr(Ⅵ) before and after quenching of Fe(Ⅱ), and the corresponding variation of pH

    图 5  球磨条件对球磨Fe/Fe3O4材料还原能力的影响

    Figure 5.  Effects of milling conditions on the reduction performance of the milled Fe/Fe3O4

    图 6  反应条件对球磨Fe/Fe3O4材料还原性能的影响

    Figure 6.  Effects of reaction conditions on the reduction performance of the milled Fe/Fe3O4

  • [1] 万仲豪, 李孟, 张倩. 间苯胺改性磁性壳聚糖对六价铬的还原-吸附协同作用机制研究[J]. 环境科学学报, 2018, 38(8): 3118-3126.
    [2] 张力, 赵勇胜. 六价铬污染模拟含水层的注入型黄原胶凝胶阻截屏障试验研究[J]. 水文地质工程地质, 2023, 50(2): 171-177.
    [3] 张进德, 田磊, 裴圣良. 矿山水土污染与防治对策研究[J]. 水文地质工程地质, 2021, 48(2): 157-163.
    [4] 徐衍忠, 秦绪娜, 刘祥红, 等. 铬污染及其生态效应[J]. 环境科学与技术, 2002, 25: 8-9.
    [5] LIU Z G, ZHANG F S, WU J Z. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 2010, 89(2): 510-514. doi: 10.1016/j.fuel.2009.08.042
    [6] 陈园园, 井琦, 任仲宇. 改性硅藻土负载纳米零价铁去除六价铬[J]. 应用化工, 2020, 49(3): 541-544.
    [7] MALLICK S, DASH S S, PARIDA K M. Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO2 leaching[J]. Journal of Colloid Interface Science, 2006, 297(2): 419-425. doi: 10.1016/j.jcis.2005.11.001
    [8] COELHO F D S, ARDISSON J D, MOURA F C, et al. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(Ⅵ) environmental contaminants[J]. Chemosphere, 2008, 71: 90-96. doi: 10.1016/j.chemosphere.2007.10.016
    [9] 平松, 杨茸茸, 吴雷, 等. 改性多孔兰炭末吸附处理模拟含铬废水[J]. 环境工程, 2023, 41(2): 7-15.
    [10] LI J X, ZHANG X Y, SUN Y K, et al. Advances in sulfidation of zerovalent iron for water decontamination[J]. Environmental Science & Technology, 2017, 51(23): 13533-13544.
    [11] WEI K, LI H, GU H, et al. Strained zero-valent iron for highly efficient heavy metal removal[J]. Advanced Functional Materials, 2022, 32(26): 2200498. doi: 10.1002/adfm.202200498
    [12] RITTER M, WEISS W. Fe3O4(Ⅲ) surface structure determined by LEED crystallography[J]. Surface Science, 1999, 432: 81-94. doi: 10.1016/S0039-6028(99)00518-X
    [13] HU J, CHEN H, DONG H Y, et al. Transformation of iopamidol and atrazine by peroxymonosulfate under catalysis of a composite iron corrosion product (Fe/Fe3O4): Electron transfer, active species and reaction pathways[J]. Journal of Hazardous Materials, 2021, 403: 123553. doi: 10.1016/j.jhazmat.2020.123553
    [14] HU J, HUANG Z Y, YU J M, Highly-effective mechanochemical destruction of hexachloroethane and hexachlorobenzene with Fe/Fe3O4 mixture as a novel additive. Science of the Total Environment. 2019, 659: 578−586.
    [15] 张震, 陈飞勇, 刘汝鹏, 等. 基于响应曲面法优化的臭氧/过硫酸盐/四氧化三铁工艺对结晶紫的降解[J]. 环境工程学报, 2023, 17(7): 2192-2204.
    [16] HU J, QIU Y F, GU B, et al. Enhancement mechanism of magnetite on the ball-milling destruction of perfluoro- octane sulfonate by iron [J]. Environmental Pollution, 2023: 121014.
    [17] ZHANG W, WANG H Z, HUANG J, et al. Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand[J]. Chemical Engineering Journal, 2014, 239: 185-191. doi: 10.1016/j.cej.2013.11.018
    [18] DENG S S, KANG S G, FENG N N, et al. Mechanochemical mechanism of rapid dechlorination of hexachloro -benzene[J]. Journal of Hazardous Materials, 2017, 333: 116-127. doi: 10.1016/j.jhazmat.2017.03.022
    [19] 王文豪. 零价金属及其复合物去除废水中Cr(Ⅵ)的效能与机理[D]. 重庆: 重庆大学, 2022.
    [20] 张文秋, 史晓国, 刘伟鑫. 湿式球磨法机械化学合成FeS2工艺[J]. 材料科学与工程学报, 2023, 41(3): 502-508.
    [21] 胡俊, 章献钊, 姚蕾, 等. 活性炭共球磨强化铁/四氧化三铁的六价铬还原性能[J]. 环境科学学报, 2023, 43(10): 116-122.
    [22] AMBIKA S, DEVASENA M. , NAMBI I M, Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction[J]. Journal of Environmental Management, 2016, 181: 84-855.
    [23] GU Y, WANG B, HE F, Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination [J]. Environmental Science & Technology, 2017, 51(21): 12653-12662.
    [24] SHAO Q Q, XU C H, WANG Y H, et al. Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: Mechanistic insights for enhanced chromate removal[J]. Water Research, 2018, 135: 322-330. doi: 10.1016/j.watres.2018.02.030
    [25] WANG W H, HU B B, WANG C, et al. Cr(Ⅵ) removal by micron-scale iron-carbon composite induced by ball milling: The role of activated carbon[J]. Chemical Engineering Journal, 2020, 389: 122633. doi: 10.1016/j.cej.2019.122633
    [26] GAN C, LIU Y G, TAN X F, et al. Effect of porous zinc-biochar nanocomposites on Cr(Ⅵ) adsorption from aqueous solution[J]. RSC Advances, 2015, 5(44): 35107-35115. doi: 10.1039/C5RA04416B
  • 加载中
图( 6)
计量
  • 文章访问数:  1287
  • HTML全文浏览数:  1287
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-06-14
  • 录用日期:  2023-10-30
  • 刊出日期:  2023-11-26
高凤如, 郭洪梅, 胡俊, 邱一凡. 机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能[J]. 环境工程学报, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061
引用本文: 高凤如, 郭洪梅, 胡俊, 邱一凡. 机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能[J]. 环境工程学报, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061
GAO Fengru, GUO Hongmei, HU Jun, QIU Yifan. Performance enhancement of Cr(Ⅵ) reduction for Fe/Fe3O4 by mechanical milling[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061
Citation: GAO Fengru, GUO Hongmei, HU Jun, QIU Yifan. Performance enhancement of Cr(Ⅵ) reduction for Fe/Fe3O4 by mechanical milling[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3562-3567. doi: 10.12030/j.cjee.202306061

机械球磨强化铁/四氧化三铁对Cr(Ⅵ)的还原性能

    通讯作者: 胡俊(1988—),男,博士,副研究员,hujun1988@zjut.edu.cn
    作者简介: 高凤如 (1988—) ,女,硕士,讲师, sdmygao@163.com
  • 1. 山东畜牧兽医职业学院,潍坊 261061
  • 2. 浙江工业大学环境学院,杭州 310014
基金项目:
山东省生猪产业技术体系(SDAIT-08-08);潍坊高新区2021年科技惠民计划项目(2021KJHM19);潍坊市科技发展计划项目(2022ZJ1226);浙江省自然科学基金资助项目(LGF22E080027)

摘要: Fe/Fe3O4作为机械球磨助磨剂可高效去除含卤污染物,但也面临着助磨剂尾料资源化利用的难题。机械球磨后的Fe/Fe3O4尾料具有良好的Cr(Ⅵ)还原性能。本研究基于尾料资源化利用和高性能材料开发的双重考虑,通过球磨模拟制备具有高Cr(Ⅵ)还原性能的Fe/Fe3O4材料。结果表明,机械球磨强化了Fe/Fe3O4材料的Cr(Ⅵ)还原性能,Cr(Ⅵ)去除率由26.1%提升至91.3%。机械球磨主要是通过促进Fe(Ⅱ)的生成和Fe释放电子的传递强化Cr(Ⅵ)还原。采用球磨Fe/Fe3O4还原Cr(Ⅵ)时,Fe(Ⅱ)的高生成量说明机械球磨促进了Fe(Ⅱ)的生成,而Fe(Ⅲ) 的高生成量和pH的大幅上升说明Fe(Ⅱ)转化为Fe(Ⅲ)。利用邻菲啰啉淬灭Fe(Ⅱ),使得球磨Fe/Fe3O4材料对Cr(Ⅵ) 的去除率降至41.8%,这表明Fe(Ⅱ)对Cr(Ⅵ) 还原起主要作用。过量的氧气和过长的球磨时间可削弱球磨Fe/Fe3O4的Cr(Ⅵ)还原性能,最佳球磨条件为氮气氛围、球磨30 min;Cr(Ⅵ)去除效果与球磨Fe/Fe3O4投加量呈正相关,而与初始pH呈负相关。

English Abstract

  • 铬(Cr)及其化合物常用于采矿、电镀等行业中,而在水体中主要以Cr(Ⅲ)和Cr(Ⅵ)存在[1-2]。 相较于Cr(Ⅲ),Cr(Ⅵ)具有可吸附性低、生物毒性强的特点,如未经处理排放到水体中,会严重威胁我国水生态环境和人民生命健康[3-4]。目前,关于Cr(Ⅵ)的处理方法主要包括物理法[5-6]和化学法[7-8]。物理法主要是采用吸附材料(活性炭、生物炭、高分子聚合物)将Cr(Ⅵ)从水相转移至吸附材料中,该方法虽具有操作方便、材料廉价易得等优势,但却存在二次污染风险[9],需进行二次处理。而化学法主要是通过加入一定数量的还原剂,从而将Cr(Ⅵ)还原转化为毒性相对较低的Cr(Ⅲ),再通过调节水体的pH值,使Cr(Ⅲ)生成沉淀物质,实现水体和Cr(Ⅲ)的分离,达到去除Cr(Ⅵ)的目的,该方法是目前应用最为广泛的方法。

    零价铁(Fe)具有还原性高、环境友好等优势,常用于水体重金属去除,但也存在颗粒易聚集、表面易氧化等缺点[10-11]。四氧化三铁(Fe3O4)是立方反尖晶石,由O2-与Fe2+、Fe3+亚晶格紧密堆积组成。其中,Fe(Ⅲ)([Fe3+]tetra)占据四面体阳离子位,Fe(Ⅱ)([Fe2+]octa)和Fe(Ⅲ)([Fe3+]octa)占据正八面体阳离子位,这使得Fe3O4电子可自由转移[12]。近几年来,Fe/Fe3O4被广泛应用于污染物催化氧化、机械脱卤过程中。一方面Fe可促进Fe(Ⅱ)/Fe(Ⅲ)的循环;另一方面Fe3O4可促进将电子传递给污染物的过程。在基于过一硫酸盐的催化氧化过程中,与Fe和Fe3O4相比,Fe/Fe3O4具有更高的催化效率和活性物种产率[13]

    机械球磨是利用磨球和物料碰撞摩擦,使得反应活化能降低、有利于固体污染物的降解。在机械球磨脱卤过程中,Fe/Fe3O4作为助磨剂可高效去除六氯苯、全氟辛烷磺酸等污染物[14-16],且在Fe/Fe3O4质量为3:7时效果最佳。由于Fe/Fe3O4具有较高的电子传递效率,将其作为助磨剂时可降低物料比(即降解单位质量污染物所需的助磨剂量),但仍面临着助磨剂尾料资源化利用的难题[16-21]。然而,研磨的Fe/Fe3O4具有良好的Cr(Ⅵ)还原性能。目前,有研究报道手动研磨的Fe和Fe3O4混合物可将Cr(Ⅵ)还原为Cr(Ⅲ),究其原因是Fe和[Fe3+]octa发生反应生成[Fe2+]octa[8]。因此,将机械球磨后的Fe/Fe3O4尾料用于Cr(Ⅵ)的还原去除,是促进尾料资源化利用的有效方式。

    因此,本研究基于Fe/Fe3O4尾料资源化利用和高性能Cr(Ⅵ)还原材料开发的双重考虑,通过球磨模拟制备Fe/Fe3O4材料,研究球磨Fe/Fe3O4材料对Cr(Ⅵ)的还原性能以及其强化机理;探究最佳球磨条件(球磨氛围和时间)及还原条件(球磨材料投加量和初始pH),为研究Fe/Fe3O4尾料资源化利用以及机械球磨Fe/Fe3O4对Cr(Ⅵ)还原性能的影响提供重要数据支撑。

    • Fe、Fe3O4、H2SO4和H3PO4等试剂采购于国药集团化学试剂有限公司。丙酮、K2Cr2O7、邻菲罗啉、二苯碳酰二肼和NH2OH·HCl等试剂采购于上海麦克林生化科技股份有限公司。Pulverisette 7行星式球磨机(德国飞驰仪器公司)的球磨罐体为不锈钢材质(体积为80 mL)。

    • 采用Fe和Fe3O4共球磨制备球磨Fe/Fe3O4材料(质量比为3:7,转速为600 r·min‒1)。所有Cr(Ⅵ)还原实验全部都在棕色锥形瓶(300 mL)中进行:先加入Cr2K2O7溶液(100 mL),然后加入定量球磨材料后进行搅拌(200 r·min‒1、25 ℃),定时取样1 mL进行分析。为确保实验结果的精确性,上述实验均重复操作两次以上。

    • 检测Cr(Ⅵ)的质量浓度:取1 mL样品置于50 mL玻璃比色管中,用蒸馏水稀释至标线位置;然后依次加入H2SO4(50%,0.5 mL)和H3PO4(50%,0.5 mL)后进行混匀;再加入2 mL显色液(将0.2 g二苯碳酰二肼溶于50 mL丙酮中)后进行混匀;静置15 min后,用分光光度计测定样品溶液在540 nm处的吸光度。配制Cr(Ⅵ)标准溶液,绘制标准曲线(1~50 mg·L−1)。

      检测Fe(Ⅱ)的质量浓度:取1 mL样品置于50 mL玻璃比色管中,用蒸馏水稀释至标线位置;依次加入5 mL乙酸-乙酸铵缓冲液(10 mmol·L−1)和0.5 mL邻菲罗啉溶液(5%)后混匀;静置15 min后,用分光光度计测定样品溶液在510 nm处的吸光度。配制Fe(Ⅱ)标准溶液,绘制标准曲线(2.5~100 mg·L−1)。

      检测总铁的质量浓度:取1 mL样品置于50 mL玻璃比色管中,用蒸馏水稀释至标线位置;依次加入1 mL盐酸羟胺(10%)、0.5 mL邻菲罗啉溶液(5%)和5 mL醋酸盐缓冲液(10 mmol·L−1);静置15 min后,用分光光度计测定样品溶液在510 nm处的吸光度。配制总铁标准溶液,绘制标准曲线(2.5~100 mg·L−1)。总铁质量浓度减去Fe(II) 质量浓度即为Fe(III) 质量浓度。

      材料表征:元素表征采用K-Alpha型X射线光电子能谱分析仪(X-ray photoelectron spectroscopy,XPS,Thermo Fisher Scientific)。以Al Kα为激发源,工作电压为12 kV,灯丝电流为6 mA;全谱扫描通能为100 eV,步长为1 eV,窄谱扫描通能为50 eV,步长为0.1 eV。晶型表征采用Ultima Ⅵ型X射线衍射光谱分析仪(X-Ray diffraction,XRD,Rigku)。以Cu-Kα 为测试靶,管电压为60 kV,电流为55 mA,扫描范围(2θ)为10°~80°。

    • 图1表示Fe、Fe3O4和Fe/Fe3O4材料的Cr(Ⅵ)还原性能状况。实验条件:Fe、Fe3O4和Fe/Fe3O4材料投加量为2.0 g·L−1,球磨氛围为空气,球磨时间为60 min,Cr(Ⅵ) 质量浓度为10 mg·L−1,初始 pH为3.0。可以发现,未球磨Fe、Fe3O4、Fe/Fe3O4材料对Cr(Ⅵ)的去除效果较差,反应120 min后,Cr(Ⅵ)去除率分别为29.7%、24.0%、26.1%。此时,Fe/Fe3O4的Cr(Ⅵ)去除效果高于Fe3O4,但低于Fe,说明Fe与Fe3O4之间的反应较弱。球磨Fe、Fe3O4、Fe/Fe3O4材料对Cr(Ⅵ)的去除效果均有提升,相比未球磨的材料,去除率分别增加了17.6%、6.0%、65.2%。对于Fe,机械球磨可去除其表面钝化层[22-23];而对于Fe/Fe3O4,机械球磨可强化Fe与Fe3O4之间的反应[8,16]。球磨Fe/Fe3O4的稳定性结果表明,在120 min 时 Cr(Ⅵ)的去除率在第1、2次循环中分别为41.3%和26.9%,再次球磨后,Cr(VI)的去除率可恢复到>90%。

    • 球磨Fe/Fe3O4材料的晶型和元素表征结果如图2所示。由图2(a)中 XRD结果可见,球磨后Fe和Fe3O4晶体减少;XPS结果表明 Fe0含量有所减小,而Fe(II)含量有所增加(图2(b))。该结果可能是由以下2点原因所致:一方面,Fe与含氧物质(空气中的氧或Fe3O4释放的氧)在高温下反应生成Fe(II)(式(1));另一方面,Fe与Fe3O4发生氧化还原反应生成Fe(II)(式(2))。Fe(Ⅱ)含量增加可加速Cr(VI)的还原(式(3))。然而,HU等报道球磨Fe/Fe3O4材料具有较小的电化学阻抗,Fe3O4作为导体可加速Fe释放的电子向污染物传递[13,16]。因此,机械球磨也可能强化Fe与Fe3O4的界面接触,加速Fe释放的电子向Cr(Ⅳ)传递,从而促进Cr(Ⅳ)的还原(式(4)和式(5))。

      本研究探索了Fe(Ⅱ)和Fe(Ⅲ)在Fe/Fe3O4样品Cr(Ⅵ) 还原过程中的生成情况。实验条件:Fe/Fe3O4投加量为2.0 g·L−1,空气氛围下球磨时间为60 min,Cr(Ⅵ) 质量浓度为10 mg·L−1,初始 pH为3.0。实验表明球磨还原Cr(Ⅵ)过程中,Fe/Fe3O4样品Fe(Ⅱ)和Fe(Ⅲ)的生成量较高,分别稳定在8.2 mg·L−1和1.5 mg·L−1(图3)。如图4(b)所示,采用球磨Fe/Fe3O4还原Cr(Ⅵ)时,反应液pH大幅上升。这是由于H+参与了Cr(Ⅵ)还原反应(式(3))。上述结果说明,机械球磨促进了Fe(Ⅱ)生成,随后与Cr(Ⅵ)反应后转化为Fe(Ⅲ)。

      SHAO等[24]报道表明邻菲啰啉可以快速淬灭Fe(Ⅱ),阻断Fe(Ⅱ)与Cr(Ⅵ)之间的氧化还原反应。因此,本研究通过加入过量邻菲啰啉作为Fe(Ⅱ) 的淬灭剂,分析Fe(Ⅱ)在球磨Fe/Fe3O4还原Cr(Ⅵ)过程中的作用。结果表明(图4(a)),加入邻菲啰啉后, Fe/Fe3O4对Cr(Ⅵ)的还原性能有所下降。经过120 min反应后,未球磨Fe/Fe3O4对Cr(Ⅵ) 的去除率由26.1%降至6.8%,而球磨Fe/Fe3O4对Cr(Ⅵ) 的去除率由91.3%降至41.8%。该结果表明,Fe(Ⅱ)在Fe/Fe3O4还原Cr(Ⅵ)过程中具有重要作用,而机械球磨可强化Fe(Ⅱ)的生成。值得注意的是,当Fe(Ⅱ)被淬灭后,与未球磨Fe/Fe3O4材料相比,球磨Fe/Fe3O4对Cr(Ⅵ)的去除率仍然较高,反应液pH上升幅度仍然较大,这说明机械球磨除了强化Fe(Ⅱ)的生成之外,还强化了Fe与Fe3O4界面的电子传递。Fe释放出电子,Fe3O4作为导体将电子传递给Cr(Ⅵ),从而加速了Cr(Ⅵ)还原(式(4)和式(5))。

    • 本研究探索了球磨氛围和球磨时间对Fe/Fe3O4材料还原性能可能产生的影响。图5(a)反映了球磨氛围的影响,实验条件:球磨Fe/Fe3O4投加量为2.0 g·L−1,球磨时间为60 min,Cr(Ⅵ) 质量浓度为10 mg·L−1,初始 pH为3.0。球磨Fe/Fe3O4在不同球磨氛围下的还原性能依次为氮气> 空气> 氧气,反应120 min 后, Cr(Ⅵ)去除率分别为100%、91.3%和76.9%。如前文所述,可以通过2条途径生成Fe(Ⅱ):一是Fe与Fe3O4表面反应生成Fe(Ⅱ);二是Fe与O2反应生成Fe(Ⅱ)。其中,Fe与Fe3O4的反应是Fe(Ⅱ)生成的主要途径[16]。在富氧条件下进行球磨时,过量的氧气会将生成的Fe(Ⅱ)进一步氧化为Fe(Ⅲ),从而降低球磨Fe/Fe3O4对Cr(Ⅵ) 的还原性能[21,25]

      图5(b)反映了球磨时间Cr(Ⅵ)还原性能的影响。实验条件:球磨Fe/Fe3O4投加量为2.0 g·L−1,球磨氛围为空气,Cr(Ⅵ) 质量浓度为10 mg·L−1,初始 pH为3.0。球磨时间增加,球磨Fe/Fe3O4的还原效果呈现先增强后减弱趋势。当球磨时间由10 min增加至30、60、120 min后,经过120 min 反应,Cr(Ⅵ)去除率分别为88.2%、97.9%、91.3%、82.4%。说明过长时间的球磨会导致Fe和Fe(Ⅱ)的过度氧化,不利于球磨Fe/Fe3O4对Cr(Ⅵ)的有效还原[16]。综上所述,球磨Fe/Fe3O4材料的最佳球磨条件为:氮气氛围、球磨30 min。

      本研究探索了投加量和初始pH对球磨Fe/Fe3O4对Cr(Ⅵ)还原性能可能产生的影响。图6(a)为Fe/Fe3O4球磨材料投加量的影响,实验条件:空气氛围下球磨时间为60 min,Cr(Ⅵ) 质量浓度为10 mg·L−1,初始 pH依然设置为3.0。Cr(Ⅵ)的还原性能随着球磨Fe/Fe3O4材料投加量的增大而不断升高。当投加量为0.5、1.0、2.0、3.0 g时,经过120 min反应,Cr(Ⅵ)去除分别为44.9%、70.4%、91.3%、100%。球磨Fe/Fe3O4投加量的增加提供了更多的Fe和Fe(Ⅱ),从而可促进对Cr(Ⅵ)的还原。

      图6(b)为初始pH对Cr(Ⅵ)还原性能的影响。实验条件为:球磨Fe/Fe3O4投加量为2.0 g·L−1,空气氛围下球磨时间为60 min,Cr(Ⅵ) 质量浓度为10 mg·L−1。球磨Fe/Fe3O4的还原性能随着初始pH的增加而不断降低。当初始pH为2.0、3.0、4.0和5.0时,经过120 min反应,Cr(Ⅵ)去除率分别为100%、91.3%、42.7%和27.8%。pH会影响溶液中铬的存在形态:当pH在2~4时,铬主要以Cr2O72‒和HCrO4存在;当pH在4~6时,铬主要以HCrO4和CrO42‒存在[26]。一方面,根据能斯特方程,在酸性条件下, Cr(Ⅵ)与Fe、Fe(Ⅱ)的反应具有较高的氧化还原电位和反应驱动力(ΔE)(式(4)和式(5));另一方面,高pH会降低反应液中Fe(Ⅱ) 质量浓度,从而不利于Cr(Ⅵ)的还原。

    • 1)机械球磨可以有效强化Fe/Fe3O4的Cr(Ⅵ)还原性能。反应120 min后,Cr(Ⅵ)去除率从26.1%提高至91.3%。

      2) Fe(Ⅱ)可显著促进Cr(Ⅵ)还原。机械球磨可强化Fe(Ⅱ)生成,促进Fe电子传递。

      3) Fe/Fe3O4最佳球磨条件如下:氮气氛围,球磨30 min。过量氧气和过长球磨时间会削弱球磨Fe/Fe3O4的Cr(Ⅵ)还原性能。

      4) Cr(Ⅵ)去除效果与球磨Fe/Fe3O4投加量呈正相关性,而与初始pH呈负相关性。

    参考文献 (26)

返回顶部

目录

/

返回文章
返回