[1] WANG C, ZHANG H, LEI P, et al. Evidence on the causes of the rising levels of CODMn along the middle route of the South-to-North Diversion Project in China: The role of algal dissolved organic matter[J]. Journal of Environmental Sciences, 2022, 113: 281-290. doi: 10.1016/j.jes.2021.06.003
[2] YAN X Y, ZHANG Y, LI Y Y, et al. Hydrologic and physicochemical factors co-drive seasonal changes of phytoplankton during dynamic water diversion processes in the Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2021, 33(5): 1350-1363. doi: 10.18307/2021.0505
[3] TAO Y Q, LU J. Occurrence of total phosphorus in surface sediments of Chinese lakes and its driving factors and implications[J]. Journal of Hydrology, 2020, 580: 1-7.
[4] 范傲翔, 王智鹏, 王超, 等. 南水北调中线总干渠水体耗氧特征及成因[J]. 环境科学学报, 2020, 40(3): 871-879. doi: 10.13671/j.hjkxxb.2019.0423
[5] AIKEN G R, GILMOUR C C, KRABBENHOFT D P, et al. Dissolved organic matter in the Florida Everglades: Implications for ecosystem restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(S1): 217-248.
[6] WARD C P, CORY R M. Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters[J]. Environmental Science-Processes & Impacts, 2020, 22(5): 1214-1223.
[7] MORAN M A, SHELDON W M, ZEPP R G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter[J]. Limnology and Oceanography, 2000, 45(6): 1254-1264. doi: 10.4319/lo.2000.45.6.1254
[8] MORAN M A, ZEPP R G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter[J]. Limnology and Oceanography, 1997, 42(6): 1307-1316. doi: 10.4319/lo.1997.42.6.1307
[9] ZHANG L, SUN Q X, DOU Q H, et al. The molecular characteristics of dissolved organic matter in urbanized river sediments and their environmental impact under the action of microorganisms[J]. Science of the Total Environment, 2022, 827: 1-11.
[10] YANG C H, LIU Y Z, ZHU Y X, et al. Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy[J]. Marine Pollution Bulletin, 2016, 104(1/2): 113-120.
[11] LI L, GAO N Y, DENG Y, et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds[J]. Water Research, 2012, 46(4): 1233-1240. doi: 10.1016/j.watres.2011.12.026
[12] 巩瑶, 宋贵生. 珠江口溶解有机物光化学降解活性[J]. 海洋环境科学, 2021, 40(5): 690-698. doi: 10.12111/j.mes.20200255
[13] DRYER D J, KORSHIN G V, FABBRICINO M. In situ examination of the protonation behavior of fulvic acids using differential absorbance spectroscopy[J]. Environmental Science & Technology, 2008, 42(17): 6644-6649.
[14] FICHOT C G, BENNER R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters[J]. Geophysical Research Letters, 2011, 38(3): 1-5.
[15] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[16] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955
[17] INAMDAR S, FINGER N, SINGH S, et al. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA[J]. Biogeochemistry, 2012, 108(1/2/3): 55-76.
[18] 曹佳锐, 龚可杨, 别宇静, 等. 水土保持林恢复土壤可溶性碳氮组分动态与三维荧光特征分析[J]. 生态学报, 2021, 41(19): 7679-7688.
[19] COBLE P G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color[J]. Chemical Reviews, 2007, 107(2): 402-418. doi: 10.1021/cr050350+
[20] KIM M-S, LIM B R, JEON P, et al. Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes[J]. Water Research, 2023, 1-14.
[21] GRANELI W, LINDELL M, TRANVIK L. Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content[J]. Limnology and Oceanography, 1996, 41(4): 698-706. doi: 10.4319/lo.1996.41.4.0698
[22] CHEN M L, JAFFE R. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland[J]. Water Research, 2014, 61: 181-190. doi: 10.1016/j.watres.2014.03.075
[23] CORY R M, KLING G W. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum[J]. Limnology and Oceanography Letters, 2018, 3(3): 102-116. doi: 10.1002/lol2.10060
[24] FICHOT C G, BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins[J]. Limnology and Oceanography, 2012, 57(5): 1453-1466. doi: 10.4319/lo.2012.57.5.1453
[25] SONG G S, Li Y J, Hu S Z, et al. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity[J]. Environmental Science: Processes & Impacts, 2017, 19(6): 861-873.
[26] BERTILSSON S, TRANVIK L J. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton[J]. Limnology and Oceanography, 1998, 43(5): 885-895. doi: 10.4319/lo.1998.43.5.0885