-
氯胺是一种常见的自来水消毒剂,分为一氯胺(NH2Cl)、二氯胺(NHCl2)和三氯胺(NCl3), 是氨分子中氢原子被氯原子取代后得到的衍生物。其中,NH2Cl在自来水的消毒中应用最为广泛[1-2],一般通过氨与次氯酸(HClO)在水溶液中反应制备(式(1))而成。相比于HClO,NH2Cl的稳定性更好,消毒能力更持久,含氯消毒副产物更少;但其消毒性能比HClO差,有更复杂的消毒副产物种类[3]。
除了直接用于自来水消毒外,NH2Cl还是高级氧化技术(advanced oxidation processes, AOPs)的常用氧化剂之一,其经过紫外(ultraviolet, UV)照射活化之后,能够产生羟基自由基(HO·)、氯自由基(Cl·)等自由基[4](式(2)~式(6)),基于NH2Cl的高级氧化技术具有选择性强,药品利用率高等优点。目前,UV/NH2Cl体系应用的领域包括饮用水、污水的杀菌消毒[5-6]以及水中微污染物的降解等[7-8]。LU等[9]研究表明,在中性条件下,中压紫外/氯胺体系能够有效降解水中的常见抗生素环丙沙星,去除率可达84.9%。另外一项研究使用了NH3/Cl2体系对水中的阿特拉津进行了降解[10],结果表明,体系中产生了HO·,活性氯自由基(reactive chlorine species, RCS)等活性组分,并成功实现了对阿特拉津的降解(降解率为50%)。
与基于紫外光UV的高级氧化系统相比,基于模拟太阳光的高级氧化系统被认为是一种更为节能环保的处理技术。在到达地球的太阳辐射光谱中,可见光(波长为λ,400<λ<760 nm)约占49%,红外光(760<λ<4 000 nm)约占46%,紫外光(λ<400 nm)约占4%[11]。近年来, 太阳光(solar)耦合自由氯(free available chlorine, FAC)体系在水处理领域的应用越来越受到关注,如消毒和药品和个人护理产品(pharmaceuticals and personal care products, PPCPs)的降解等[12]。HUA等[13]研究了太阳光/FAC系统对包括抗生素、非甾体抗炎药、β阻滞剂在内的24种典型PPCPs的降解效能,结果表明,当pH由6.0升至8.0,体系中HO·和·Cl稳态浓度下降,而氧化氯(ClO·)稳态浓度有显著上升,此时,有11种PPCPs的去除率增大。此外,由于臭氧(O3)的产生,溶解氧(dissolved oxygen, DO)的存在能够显著提升大部分PPCPs的降解效果。整体而言,目前对于Solar/FAC体系降解微污染物的反应动力学、反应机理以及消毒副产物的产生与演化等方面的研究已经十分深入,但对于太阳光/NH2Cl体系的相关研究仍然具有大片空白。相比于FAC,NH2Cl在水体中的存留时间更长,消毒效果也更持久。此外,城市污废水中通常含有较高浓度的NH4+-N,在对其进行处理与再利用的过程中也难免会产生NH2Cl。因此,有必要对太阳光/NH2Cl体系对污染物的降解效能、反应机理等进行深入的研究。
本研究选择阿司匹林(aspirin, ASA)和氟尼辛葡甲胺(flunixin meglumine, FMME)2种典型的PPCPs作为目标污染物,以硝基苯(nitrobenzene, NB)和苯甲酸(benzoic acid, BA)这2种常见的工业污染物作为指针物质,探究了太阳光/NH2Cl体系对有机污染物的降解效能及影响因素,深入解析了太阳光/NH2Cl体系中污染物的降解机理及活性因子的贡献率,最后对这一体系降解微污染物的经济性进行了评估。
太阳光/NH2Cl体系降解微污染物的效能及动力学
Performance and kinetics of Solar/NH2Cl system on micro-pollutant degradation
-
摘要: 利用太阳光和一氯胺(太阳光/NH2Cl)体系降解阿司匹林((aspirin, ASA)、氟尼辛葡甲胺(flunixin meglumine, FMME)、苯甲酸(benzoic acid, BA)以及硝基苯(nitrobenzene, NB)4种代表性微污染物,探究该体系对于微污染物的降解效能以及动力学特征。结果表明,单独太阳光以及单独NH2Cl体系对污染物几乎均无降解效果(降解率<5%),而太阳光/NH2Cl体系中污染物的降解效能显著提升,pH的改变对4种污染物降解效能的影响各不相同。在实验pH条件下,以活性氮自由基和活性氯自由基为主的其他活性组分和NH2Cl对FMME的降解起主要作用(贡献率为79.27%~89.39%),而羟基自由基(HO·)始终是ASA的降解中贡献最大的活性组分(贡献率为44.9%~76.8%)。在酸性环境中,太阳光/NH2Cl体系产生的消毒副产物质量浓度及毒性方面均大于单独NH2Cl体系,而在碱性条件下其产生的消毒副产物质量浓度则明显降低,实际中应用本体系进行消毒时应考虑将pH调至碱性。Abstract: In this study, the Solar/chloramine system was used to degrade four representative micro-pollutants, including aspirin (ASA), flunixin glucosamine (FMME), benzoic acid (BA), and nitrobenzene (NB), and the degradation efficiency and kinetic characteristics of the system were investigated. The experimental results showed that both Solar alone and NH2Cl alone systems led to low removal (the degradation rate<5%). However, the degradation of the pollutants in the Solar/NH2Cl system increased significantly, and pH variation had different effects on degradation of the four pollutants. Under the experimental pH conditions, NH2Cl and other active components such as reactive nitrogen species, reactive chlorine species contributed to most FMME degradation (the contribution rate was 79.27%~89.39%), while hydroxyl radicals (HO·) made a dominant contribution to the degradation of ASA (the contribution rate was 44.9%~76.8%). Under acidic conditions, the concentration and toxicity of disinfection by-products (DBPs) produced in Solar/NH2Cl system were higher than those in NH2Cl alone. Nevertheless, the concentration of DBPs in Solar/NH2Cl system decreased significantly under alkaline conditions. Thus, the pH should be adjusted to alkaline when this system is used to disinfect water in practice.
-
Key words:
- chloramine /
- micro-pollutants /
- kinetics /
- reactive species /
- disinfection byproducts
-
表 1 不同pH条件下单独太阳光照和单独NH2Cl体系中污染物在15 min时的去除率
Table 1. Degradation of contaminants in Solar alone and NH2Cl alone systems at different pH for 15 min
污染物 15 min去除率/% 太阳光照
(pH=7.0)NH2Cl
(pH=5.5)NH2Cl
(pH=7.0)NH2Cl
(pH=8.5)ASA 3.95 3.91 4.54 1.97 FMME 0.30 40.44 36.53 3.78 NB 0.30 2.77 1.91 6.57 BA 0.12 0.66 0.35 0.15 表 2 不同温度下无光照单独NH2Cl体系中污染物的15 min去除率
Table 2. Degradation of contaminants in NH2Cl alone system without solar irradiation at different temperature for 15 min
污染物 去除率/% 10 ℃ 25 ℃ 40 ℃ 55 ℃ ASA 0.00 2.26 2.46 1.03 FMME 32.53 36.53 35.53 40.44 NB 0.00 0.00 2.87 3.20 BA 0.00 0.00 2.35 0.25 表 3 不同温度条件下太阳光/NH2Cl体系中污染物的15 min去除率及kobs
Table 3. Degradation of contaminants and kobs in Solar/NH2Cl system at different temperature for 15 min
污染物 去除率/% kobs/ min−1 10 ℃ 25 ℃ 40 ℃ 55 ℃ 10 ℃ 25 ℃ 40 ℃ 55 ℃ ASA 73.15 75.62 78.85 80.66 0.092 0.094 0.097 0.104 FMME 50.16 53.12 58.30 61.17 0.048 0.052 0.059 0.062 NB 17.69 19 .03 26.96 52.63 0.010 0.014 0.031 0.051 BA 13.61 20.21 25.25 28.75 0.014 0.015 0.020 0.023 表 4 不同pH条件下HO·与FMME和ASA的速率常数
Table 4. The rate constants of HO· reacting with FMME and ASA at different pHs s−1
pH kobs-ASA kobs-FMME kOH-ASA kOH-FMME 5.5 0.65×10−3 2.82×10−3 3.97×10−4 5.86×10−4 7.0 0.31×10−3 3.21×10−3 2.38×10−4 3.51×10−4 8.5 0.49×10−3 3.06×10−3 2.20×10−4 3.25×10−4 表 5 本实验选取的DBPs的毒性参数
Table 5. Toxicity parameters of DBPs in this experiment
物质名称 简称 半致死浓度/(mol·L−1) 三氯甲烷(CHCl3) TCM 9.62×10−3 二氯一溴甲烷(CHCl2Br) BDCM 11.5×10−3 一氯二溴甲烷(CHClBr2) DBCM 5.36×10−3 三溴甲烷(CHBr3) TBM 3.96×10−3 -
[1] 孙坚伟. 紫外/氯胺消毒对供水系统中微生物数量分布的影响[J]. 中国给水排水, 2022, 38(9): 39-43. [2] 员建, 罗小平, 崔月娟, 等. 氯胺消毒对三卤甲烷生成影响因素研究[J]. 环境污染与防治, 2014, 36(7): 9-13. doi: 10.3969/j.issn.1001-3865.2014.07.003 [3] 马蓉, 吕锡武, 窦月芹. 氯胺消毒对管网中消毒副产物的控制[J]. 水处理技术, 2006, 32(7): 67-69. [4] 刘汝鹏, 郝玉友, 罗从伟, 等. 紫外/一氯胺降解水中氯霉素的性能与机理研究[J]. 中国给水排水, 2021, 37(9): 51-56. [5] 韩雪, 孙坚伟, 张力, 等. 紫外氯胺组合消毒供水系统中病毒微生物的分布特征[J]. 环境科学, 2021, 42(2): 860-866. [6] 张馨怡, 魏东斌, 杜宇国. 紫外-氯联合消毒处理及副产物生成特征研究进展[J]. 环境化学, 2018, 37(9): 1950-1560. [7] IBANEZ M, GRACIA-LOR E, BIJLSMA L, et al. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone[J]. Journal of Hazardous Materials, 2013, 260: 389-398. doi: 10.1016/j.jhazmat.2013.05.023 [8] 朱永娟, 李健鹏, 孔德挺, 等. 紫外/氯胺高级氧化法降解水中四环素的研究[J]. 长春师范大学学报, 2022, 41(4): 74-78. [9] LU Z D, LING Y C, WANG X L, et al. Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process[J]. Science of the Total Environment, 2022, 832: 154850. doi: 10.1016/j.scitotenv.2022.154850 [10] YE B, LIU Z Y, ZHU X Q, et al. Degradation of atrazine (ATZ) by ammonia/chlorine synergistic oxidation process[J]. Chemical Engineering Journal, 2021, 415: 128841. doi: 10.1016/j.cej.2021.128841 [11] CHEN M, BLANKENSHIP R E. Expanding the solar spectrum used by photosynthesis[J]. Trends in Plant Science, 2011, 16(8): 427-431. doi: 10.1016/j.tplants.2011.03.011 [12] CHENG S S, ZHANG X R, SONG W H, et al. Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine[J]. Science of the Total Environment, 2019, 682: 629-638. doi: 10.1016/j.scitotenv.2019.05.184 [13] HUA Z C, GUO K H, KONG X J, et al. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen[J]. Water Research, 2019, 150: 77-85. doi: 10.1016/j.watres.2018.11.041 [14] LASZAKOVITS J R, BENG S M, ANDERSON B G, et al. p-Nitroanisole/Pyridine and p-Nitroacetophenone/Pyridine actinometers revisited: Quantum yield in comparison to ferrioxalate[J]. Environmental Science & Technology Letters, 2017, 4(1): 11-14. [15] ANIPSITAKIS G P, DIONYSIOU D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B:Environmental, 2004, 54(3): 155-163. doi: 10.1016/j.apcatb.2004.05.025 [16] XIAO Y J, ZHANG L F, YUE J Q, et al. Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes[J]. Water Research, 2015, 75: 259-269. doi: 10.1016/j.watres.2015.02.044 [17] CHEN C Y, WU Z H, HUA Z C, et al. Mechanistic and kinetic understanding of micropollutant degradation by the UV/NH2Cl process in simulated drinking water[J]. Water Research, 2021, 204: 117569. doi: 10.1016/j.watres.2021.117569 [18] LEE Y, VON GUNTEN U. Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment[J]. Water Research, 2012, 46(19): 6177-6195. doi: 10.1016/j.watres.2012.06.006 [19] WU Z H, CHEN C Y, ZHU B Z, et al. Reactive nitrogen species are also involved in the transformation of micropollutants by the UV/monochloramine process[J]. Environmental Science & Technology, 2019, 53(19): 11142-1152. [20] XIANG Y Y, FANG J Y, SHANG C I. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process[J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069 [21] BU L J, ZHOU S Q, ZHU S M, et al. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation[J]. Water Research, 2018, 146: 288-297. doi: 10.1016/j.watres.2018.09.036 [22] 焦中志, 陈忠林, 陈杰, 等. 氯胺消毒对消毒副产物的控制研究[J]. 哈尔滨工业大学学报, 2005, 37(11): 1486-1488. [23] 焦中志, 陈忠林, 卢伟强, 等. 氯胺消毒对三卤甲烷类消毒副产物的控制研究[J]. 环境污染治理技术与设备, 2006, 7(6): 43-45. [24] 陈杰, 李星, 杨艳玲, 等. 预氯胺化控制消毒副产物技术研究[J]. 中国给水排水, 2005, 21(7): 5-8. [25] ZHANG Y Q, XIAO Y J, ZHONG Y, et al. Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity[J]. Chemical Engineering Journal, 2019, 372: 420-428. doi: 10.1016/j.cej.2019.04.160