Processing math: 100%

外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响

游佳倩, 谢琤琤, 廖可薇, 胡海冬. 外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响[J]. 环境工程学报, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116
引用本文: 游佳倩, 谢琤琤, 廖可薇, 胡海冬. 外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响[J]. 环境工程学报, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116
YOU Jiaqian, XIE Chengcheng, LIAO Kewei, HU Haidong. Effect of exogenous calcium ions on characteristics of dissolved organic nitrogen in aerobic activated sludge reactors[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116
Citation: YOU Jiaqian, XIE Chengcheng, LIAO Kewei, HU Haidong. Effect of exogenous calcium ions on characteristics of dissolved organic nitrogen in aerobic activated sludge reactors[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116

外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响

    作者简介: 游佳倩 (2000—) ,女,硕士研究生,jiaqianyou@smail.nju.edu.cn
    通讯作者: 谢琤琤(1978—),女,硕士,chengchengxie@sina.com 胡海冬(1989—),男,博士,副教授,hdhu@nju.edu.cn
  • 基金项目:
    国家自然科学基金面上项目 (52170036) ;江苏省自然科学青年基金资助项目(BK20180346)
  • 中图分类号: X703.1

Effect of exogenous calcium ions on characteristics of dissolved organic nitrogen in aerobic activated sludge reactors

    Corresponding authors: XIE Chengcheng, chengchengxie@sina.com ;  HU Haidong, hdhu@nju.edu.cn
  • 摘要: 为探明外源钙离子对好氧活性污泥系统溶解性有机氮 (DON) 的影响,考察了不同钙离子浓度下 (0~1 mmol·L−1) 出水DON浓度和生物有效性的变化,并结合傅里叶变换离子回旋共振质谱 (FTICR-MS) 及微生物代谢活性和群落结构分析探究钙离子影响的分子层面原因和微生物内在机理。结果表明,出水DON的浓度和生物有效性随着外源钙离子浓度的增加均呈现阈值现象,在最佳钙离子投加阈值浓度 (0.1 mmol·L−1 Ca2+) 下,出水DON浓度和生物有效性为1.46±0.12 mg·L−1和17.97%±0.05%,比空白组 (0 mmol·L−1 Ca2+) 分别增加了35.2%和降低了47.6%。FTICR-MS分析DON的分子特征显示,钙离子是通过影响好氧活性污泥反应器中氧化程度较低分的组分 (NOSC<0) 影响了最终出水DON的生物有效性。微生物学分析表明,三磷酸腺苷、琥珀酸脱氢酶、脱氢酶、饱和脂肪酸和Luteolibacter菌是推动出水DON去除率提升和生物有效性降低的重要因素。
  • 畜禽养殖废水含有高浓度有机物、氨氮和悬浮固体和相当数量的病原体及特定结构的有毒物质[1-2],经过好氧处理后色度亦急剧升高,是地表水及地下水的主要污染源[3]。目前,很多研究者认为畜禽养殖废水处理是一个难题,并给予了极大的关注[4]。处理畜禽养殖废水的传统技术主要有还田技术、生态修复技术和生化处理技术[5],但是对其中多环有机物去除效果不太理想,因其分子结构复杂、化学性质稳定,传统方法无能为力,处理后的出水COD和色度仍然居高不下。因此,因地制宜,因水制宜,建立不同区域养殖废水处理模式已经成为当前的研究重点。

    臭氧氧化法因其具有高效、经济、操作简便和脱色效果明显等优点,在提高难生化降解有机废水的可生化性以及显色废水的脱色方面得到了广泛应用。而单独臭氧氧化法一直面临臭氧利用效率低下、污染物去除效果不佳以及成本高昂等缺点。在非均相催化条件下,已有研究[6]表明,能够促进臭氧向羟基自由基(HO·)的转变,提高臭氧利用率及有机物矿化效率。非均相催化臭氧化技术不仅能更加高效地分解O3产生HO·,而且催化剂以固态形式存在,在弱酸至弱碱环境中金属元素基本不溶出[7-8],具有工艺流程简单,催化效率高、易分离、可重复利用等优点。许珊珊等[9]研究了MgO/GAC在臭氧化氧化敌草隆和乙酸中的活性,结果表明MgO/GAC能使臭氧化的效率提高约15%~35%;将Fe-Ce/GAC催化剂用于催化臭氧降解模拟高浓度腐殖酸废水,可使COD、腐殖酸去除率分别比单纯臭氧氧化提高了40.3%、31.8%[10];使用负载铈的黄铁矿烧渣催化臭氧氧化水中活性黑5,在pH为3~10时,Ce-PyC均能保持稳定高效的催化活性,TOC去除率可达到80%[11]。但有关负载型Mn-Fe-Ce/γ-Al2O3催化剂的制备以及三元催化剂的应用目前仍鲜有研究,尤其是奶牛养殖废水应用微气泡臭氧非均相催化氧化的方法进行处理,其在单独臭氧氧化、普通催化剂/臭氧体系与三元催化剂/臭氧体系的降解效果与机理都值得深入研究。

    本研究采用浸渍焙烧法制备了负载型Mn-Fe-Ce/γ-Al2O3催化剂,分别对制备条件和工艺条件进行了优化,通过SEM、XRF、BET和XRD等分析手段表征了催化剂的结构和物理化学特性,并与微气泡臭氧构成了非均相催化臭氧氧化体系,以某奶牛养殖基地一级生化处理出水为处理对象,考察了该非均相臭氧催化剂的催化活性。

    将γ-Al2O3小球用去离子水清洗,后放于烘箱中干燥,在65 ℃的条件下干燥。通过浸渍焙烧法制备三元催化剂,取一定量的硝酸锰、硝酸铁和硝酸铈,将其溶于蒸馏水中,充分搅拌,定容至100 mL后形成前驱体浸渍液,溶液中硝酸锰、硝酸铁和硝酸铈的质量浓度分别是1%、1%和1.5%;将20 g γ-Al2O3小球浸入前驱体浸渍液中,分别经振荡浸渍和静态浸渍,其中振荡浸渍为12 h,振荡条件为:振荡温度为30 ℃,振荡速度为180 r·min−1;静态浸渍12 h,静态条件为30 ℃下放置。使金属负载于γ-Al2O3小球表面;滤去浸渍液,取出催化剂并将其放入温度为65 ℃的烘箱中干燥12 h;将干燥后的催化剂置于坩埚后,放于温度为600 ℃的马弗炉中焙烧4 h,焙烧后即制得三元负载型Mn-Fe-Ce/γ-Al2O3催化剂。

    采用场发射扫描电子显微镜(SEM,SU8220型,日立公司,日本)观察催化剂的微观形貌;催化剂中的元素含量测定使用能量色散型X射线荧光光谱仪(XRF,EDX-7000,岛津公司,日本);使用全自动快速比表面与孔隙度分析仪(BET,ASAP2460型,Micromeritics公司,美国)检测催化剂的比表面积;催化剂的晶态结构使用X射线衍射仪(XRD,D8 ADVANCE型,Bruker公司,德国)进行分析。

    实验所用废水为实际废水,取自广州市某奶牛养殖基地的一级好氧池出水,COD平均值为460 mg·L−1,且可生化性低,二级生化池COD几乎没有降低,其中的有机物难以通过传统生物方法降解。实验所用装置如图1所示。

    图 1  微气泡臭氧催化氧化实验装置图
    Figure 1.  Schematic diagram of microbubble ozone catalytic oxidation

    臭氧发生器的型号为CH-ZTW5G,臭氧反应器为2个自制的有机玻璃反应器,其中左方反应器高度为300 mm,直径为120 mm,有效容积为4 L,在高度为80 mm的地方装有孔径为2 mm不锈钢多空分散网,布气装置为反应器底部的微米级曝气头。右方反应器高度为200 mm,直径为100 mm,内部安装一个潜水泵,型号为HJ-611。

    所有实验均在室温下进行,采用半连续方式进行,将约为3.6 L的废水倒入右方反应器,开启潜水泵,使右方容器的废水进入左方的反应器中,待水位到达出水口位置,废水再次流入右方容器中,废水形成循环的流动状态,有利于臭氧与废水的混合。反应过程中,调节水样pH至9,臭氧投加量为12.5 mg·(L·min)−1,催化氧化时间为20 min,催化剂投加量为60 g,分别在5、10、15、20 min时进行取样,再分别测定COD和色度。

    COD的测定采用紫外分光光度法;色度的测定采用稀释倍数法;pH的测定采用比色法。

    图2(a)~(f)分别为Mn-Fe-Ce/γ-Al2O3催化剂及γ-Al2O3在5、2和1 μm下的SEM图。由图2(a)~(c)中可以明显看见,2种材料表面呈现出不同的形貌特征,Mn-Fe-Ce/γ-Al2O3催化剂表面多呈现出椭圆形的细小颗粒,经过浸渍焙烧后生成的活性组分均匀附着在载体表面。催化剂在高温条件下发生物化反应,生成了金属氧化物。由图2(d)~(f)可见,γ-Al2O3载体表面明显较光滑,并稀疏地分布有一些不规则的小颗粒。以上结果能够证明活性组分负载成功。

    图 2  Mn-Fe-Ce/γ-Al2O3催化剂及γ-Al2O3的SEM图
    Figure 2.  SEM images of Mn-Fe-Ce/γ-Al2O3 catalyst and γ-Al2O3

    通过XRF能谱分析了Mn-Fe-Ce/γ-Al2O3催化剂及γ-Al2O3的元素组成,测定结果如图3所示。由图3可知,Mn-Fe-Ce/γ-Al2O3催化剂中除了主要元素Al以外,检测到了Fe、Mn、Ce的百分含量为17.553%、11.649%、10.241%;而γ-Al2O3中存在90%以上的Al和微量的其他元素,但并未检测到Fe、Mn、Ce,说明Fe、Mn、Ce能有效地负载在γ-Al2O3的表面,与SEM形貌观测相一致。

    图 3  Mn-Fe-Ce/γ- Al2O3催化剂及γ- Al2O3的XRF分析
    Figure 3.  XRF analysis of Mn-Fe-Ce/γ-Al2O3 catalyst and γ-Al2O3

    对Mn-Fe-Ce/γ-Al2O3催化剂及γ-Al2O3进行了BET测试,如表1所示。负载了Mn、Fe、Ce的γ-Al2O3催化剂相比于γ-Al2O3,其比表面积和总孔体积都有所下降,这是因为经过活性组分的负载后,载体上的部分孔道和缝隙被占据[12],这也可以从SEM分析中得到证实。

    表 1  催化剂的比表面积和总孔体积分析
    Table 1.  Analysis of specific surface area and total pore volume of catalyst
    催化剂比表面积/(m2•g−1)总孔体积/(cm3•g−1)
    Mn-Fe-Ce/γ- Al2O3159.969 80.046 016
    γ- Al2O3200.208 20.059 603
     | Show Table
    DownLoad: CSV

    Mn-Fe-Ce/γ-Al2O3催化剂及γ-Al2O3的XRD如图4所示。在图4(b)中,位于2θ=37.441º、39.672º、42.823º、45.788º、60.457º、67.306º、85.005º处的衍射峰与JCPDS标准卡片中的Al2O3的特征峰吻合并且强度一致;而在图4(a)中,可以明显看出衍射角为28º~30º以及32º处出现部分衍射峰,且同样表现出了Al2O3的特征峰,从标准卡片中可以看出,衍射角为28.68º的特征峰属于无定型的MnO2,31.0º的特征峰属于Fe2O3,28.7º的特征峰属于Ce2O3。但所检测出来的衍射峰强度均较弱,这可能与负载量和结晶效果有关。

    图 4  Mn-Fe-Ce/γ-Al2O3和γ-Al2O3的XRD图谱
    Figure 4.  XRD patterns of Mn-Fe-Ce/γ-Al2O3 and γ-Al2O3

    以废水COD和色度去除率为考察指标,分别通过单独臭氧氧化和微气泡臭氧非均相催化氧化奶牛养殖废水,对比其催化效果,微气泡臭氧非均相催化氧化分别以未改性的γ-Al2O3和Mn-Fe-Ce/γ-Al2O3作为非均相臭氧催化剂。通过测定Mn-Fe-Ce/γ-Al2O3+O3反应前后废水的BOD5/COD,验证微气泡臭氧非均相催化氧化对奶牛养殖废水可生化性的影响。

    在单独臭氧处理时,5 min内COD的去除率仅为5.3%,处理进行到20 min时,COD的去除率也只达到13.8%;在采用γ-Al2O3+O3处理时,COD去除率相比于单独臭氧氧化有少许提升,5 min之后的COD的去除速率达到了9.9%,反应结束后COD的去除率达到了20.4%,略高于单独臭氧氧化时的去除率;在采用Mn-Fe-Ce/γ-Al2O3+O3处理时,5 min内去除率已经达到32.4%,COD的去除率在反应结束时为48.9%,相比γ-Al2O3处理,COD去除效果得到显著提升。

    图 5  微气泡臭氧非均相催化氧化对奶牛养殖废水COD去除率的影响
    Figure 5.  Effect of microbubble ozone heterogeneous catalytic oxidation on COD removal efficiency in dairy
    farming wastewater

    单独臭氧处理的色度去除率为75%,采用γ-Al2O3+O3处理时,色度去除率为80%,当采用Mn-Fe-Ce/γ-Al2O3+O3,色度去除率可达95%。总体呈现出较好的脱色效果,使用Mn-Fe-Ce/γ-Al2O3作为催化剂的去除效果相比前两者更为突出。由COD和色度去除率的结果可以说明,经过改性后的Mn-Fe-Ce/γ-Al2O3催化剂具有较高的臭氧催化活性。

    图 6  微气泡臭氧非均相催化氧化对奶牛养殖废水色度去除率的影响
    Figure 6.  Effect of microbubble ozone heterogeneous catalytic oxidation on removal efficiency of chromaticity in
    dairy farming wastewater

    为验证Mn-Fe-Ce/γ-Al2O3+O3体系对奶牛养殖废水可生化性的影响,分别测定反应前废水与反应后废水的BOD5、COD、NH3-N、TP和色度,具体水质指标如表2所示。Mn-Fe-Ce/γ-Al2O3+O3体系处理后,NH3-N与TP浓度变化很小,COD有大幅降低,而且BOD5/COD由原来的0.21提高至0.54,可生化性得到明显提高,表明Mn-Fe-Ce/γ-Al2O3+O3体系将奶牛养殖废水中部分难生化降解的有机物已经转化为可生化降解的有机物。

    表 2  微气泡臭氧非均相催化氧化对奶牛养殖废水可生化性的影响
    Table 2.  Effect of heterogeneous catalytic oxidation of microbubble ozone on biodegradability of dairy farming wastewater
    水质指标COD/(mg•L−1)BOD5/(mg•L−1)BOD5/CODNH3-N/(mg•L−1)TP/(mg•L−1)色度/倍
    处理前46098.40.2159.097.52160
    处理后235126.90.5456.307.258
     | Show Table
    DownLoad: CSV

    废水中的难生化降解有机物可能来源于饲料、奶牛或厌氧微生物的代谢产物,由于饲料主要来自于当地,从而养殖废水水质也具有一定的地域性和特殊性。使用质谱仪对水质进行分析,结果显示有多达6 000种有机物,且大部分为较复杂的含苯环结构的有机物。不同反应时间的水样紫外光谱扫描结果如图7所示。由图7可知,接近300 nm处出现明显的吸收峰。有研究[13]表明,250 nm处的紫外吸收说明芳环的存在;250~300 nm处的紫外吸收说明有苯环的存在。该奶牛养殖废水在接近300 nm处有紫外吸收,且吸收峰明显,吸光度质较高,也说明体系中存在的难以生化降解的有机物含有苯环结构。另外,随反应从0 min到20 min的进行,紫外吸收峰逐渐降低,说明含苯环有机物被破坏,难生化降解有机物越来越少[14]

    图 7  微气泡臭氧非均相催化氧化前后废水的紫外光谱图
    Figure 7.  Ultraviolet spectra of wastewater before and after microbubble ozone heterogeneous catalytic oxidation

    为验证反应体系中HO·的存在,分析HO·在臭氧非均相催化氧化降解奶牛养殖废水的过程中的作用,以叔丁醇(TBA)作为淬灭剂[15-16],考察该反应是否为HO·介导的氧化机理。分别向O3反应体系和Mn-Fe-Ce/γ-Al2O3+O3体系加入20 mg·L−1的TBA,结果如图8所示。加入TBA后2个体系表现出了不同程度的抑制作用。对于O3体系,加入叔丁醇对COD的去除率降低了不到1%,而在相同的条件下,对于Mn-Fe-Ce/γ-Al2O3+O3体系,加入叔丁醇后在15 min内COD的去除率只有23.0%,未加入叔丁醇在15 min内COD的去除率为45.7%。总体上说明了TBA抑制了体系中大部分HO·的氧化作用,表明在Mn-Fe-Ce/γ-Al2O3+O3体系中HO·是主要的氧化剂。

    图 8  叔丁醇对奶牛养殖废水降解的影响
    Figure 8.  Effect of tert-butanol on degradation of dairy farming wastewater

    在叔丁醇存在条件下,Mn-Fe-Ce/γ-Al2O3+O3体系反应进行到20 min时,COD去除率反而下降,仅有3.7%,推测可能的原因是:叔丁醇作为HO·淬灭剂,显著减少了体系中的HO·,但也不可能完全淬灭体系产生的所有HO·。在这种情况下,HO·与难生降解有机物的作用过程将变得比较缓慢。在前15 min内,废水中的难降解有机物在HO·的作用下,分子结构尚未发生重大变化(如开环),也不能被重铬酸钾氧化;进行到20 min时,在HO·的持续作用下这些难降解有机物分子结构发生了重大变化(如开环),中间产物也可以被重铬酸钾氧化,因而COD不降反升,其去除率下降。但上述推测尚需进一步的实验数据证实。

    目前,对于臭氧非均相催化氧化的机理研究,尽管仍存在少许特例提出反应过程中不涉及HO·的产生,如KASPRZYK-HORDERN等[17]认为Fe2O3/Al2O3催化臭氧氧化草酸,叔丁醇的投加对反应过程不造成影响,是臭氧分子直接氧化的作用,但绝大多数臭氧非均相催化氧化的反应都为HO·介导的氧化机理[18-20],并且在反应体系中发挥着主要作用[21-23]。采用Mn-Fe-Ce/γ-Al2O3作为臭氧催化剂,能提高对奶牛养殖废水中难生化降解有机物的氧化效果,关键原因就在于负载了金属氧化物的负载型催化剂在载体表面提供了大量活性位点,从而表现出更高的活性[24],通过锰、铁和铈的氧化物的负载,活性组分可以发挥协同催化作用[25],使体系中生成了更多氧化能力较强的HO·。稀土元素中的4f轨道被发现[26]有助于臭氧的催化,二氧化铈作为一种立方萤石多孔型氧化物,可使反应体系中离子和臭氧快速分散。此外,BOARO等[27]等提出氧空穴理论,Ce在氧化反应中能在三价与四价中进行转换,使晶格形成氧空穴[28-29],从而促进HO·的生成。在微气泡臭氧非均相催化氧化的过程中,由于催化剂表面电荷不平衡,水中的金属氧化物如二氧化锰、氧化铁会强烈吸附水分子[30],水分子发生电离生成H+和OH-会与金属氧化物产生表面羟基,溶解在水中的臭氧可与表面羟基发生反应生成HO·[21, 31-32]。其机理如式(1)~式(3)所示[33]

    MeOH+O3MeOHO3MeHO2+O2 (1)
    MeHO2+O3Me+HO+O2+O2 (2)
    O2+O3+H+HO+2O2 (3)

    本研究结果支持了第2种观点,即遵循HO·介导的氧化机理。臭氧分子吸附在Mn-Fe-Ce/γ-Al2O3催化剂的表面,与表面羟基发生上述链式反应,从而进一步分解产生HO·。

    1)经含锰化合物、含铁化合物和含铈化合物的前驱体浸渍液浸渍并焙烧后制得Mn-Fe-Ce/γ-Al2O3催化剂,在pH为9,O3投加量为12.5 mg·(L·min)−1,反应时间为20 min,催化剂投加量为60 g的条件下进行臭氧催化氧化,奶牛养殖废水COD去除率和色度去除率分别可达到48.9%和95%,较单独臭氧氧化时的COD去除率和色度去除率分别提高了35.1%和20%。

    2) SEM结果显示,在Mn-Fe-Ce/γ-Al2O3经过改性后,活性组分均匀附着在载体表面;XRF分析显示Fe、Mn、Ce 3种元素能有效地负载在γ-Al2O3的表面;BET的结果经过活性组分的负载后,载体上的部分孔道和缝隙被占据,与SEM的结果相呼应;XRD分析表明,催化剂表明形成了活性组分,形成较弱的衍射峰与负载量和结晶效果有关。

    3)通过添加TBA作淬灭剂,验证反应体系中HO·的存在,结果表明,单独O3体系中加入叔丁醇对COD的去除率降低了不到1%,而在相同条件下,对于Mn-Fe-Ce/γ-Al2O3+O3体系,加入叔丁醇后COD的去除率从48.9%降至3.7%,明显抑制了水中有机污染物的氧化。HO·在Mn-Fe-Ce/γ-Al2O3+O3体系中是主要的氧化剂。

  • 图 1  钙离子对反应器出水DON浓度的影响

    Figure 1.  Effects of calcium ions on effluent DON concentrations

    图 2  反应器在不同钙离子浓度下的出水DON生物有效性

    Figure 2.  Bioavailability of effluent DON under different calcium ion concentrations

    图 3  反应器在不同钙离子浓度下的DON分子特征变化

    Figure 3.  Changes in DON molecular characteristics of the bioreactors at different calcium ion concentrations

    图 4  钙离子对反应器微生物代谢活性的影响

    Figure 4.  Effects of calcium ions on microbial metabolic activity in the bioreactors

    图 5  钙离子对反应器中细胞膜组成的影响

    Figure 5.  Effects of calcium ions on the composition of cell membrane in the bioreactors

    图 6  钙离子对反应器中微生物群落结构 (属水平) 的影响

    Figure 6.  Effects of calcium ions on microbial community structure (genus level) in the bioreactors

    图 7  反应器在不同钙离子浓度下的冗余分析

    Figure 7.  Redundancy analysis of the bioreactors under different calcium ion concentrations

  • [1] PRICE J R, LEDFORD S H, RYAN M O, et al. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in receiving streams[J]. Science of the Total Environment, 2018, 613-614: 1104-1116. doi: 10.1016/j.scitotenv.2017.09.162
    [2] CHENG H Z, MA S J, LIAO K W, et al. Effect of external carbon source type on effluent dissolved organic nitrogen characteristics in postdenitrifying moving bed biofilm reactors: Chemical molecular and microbial insights[J]. Chemical Engineering Journal, 2023, 466: 143338. doi: 10.1016/j.cej.2023.143338
    [3] PEHLIVANOGLU-MANTAS E, SEDLAK D L. Wastewater-derived dissolved organic nitrogen: analytical methods, characterization, and effects—A review[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(3): 261-285. doi: 10.1080/10643380500542780
    [4] LIU H Z, JEONG J, GRAY H, et al. Algal uptake of hydrophobic and hydrophilic dissolved organic nitrogen in effluent from biological nutrient removal municipal wastewater treatment systems[J]. Environmental Science & Technology, 2012, 46(2): 713-721.
    [5] EOM H, BORGATTI D, PAERL H W, et al. Formation of low-molecular-weight dissolved organic nitrogen in predenitrification biological nutrient removal systems and its impact on eutrophication in coastal waters[J]. Environmental Science & Technology, 2017, 51(7): 3776-3783.
    [6] HU H D, LIAO K W, GENG J J, et al. Removal characteristics of dissolved organic nitrogen and its bioavailable portion in a postdenitrifying biofilter: Effect of the C/N ratio[J]. Environmental Science & Technology, 2018, 52(2): 757-764.
    [7] PEHLIVANOGLU E, SEDLAK D L. Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum Capricornutum[J]. Water Research, 2004, 38(14): 3189-3196.
    [8] HUO S L, XI B D, YU H L, et al. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants[J]. Environmental Research Letters, 2013, 8(4): 044005. doi: 10.1088/1748-9326/8/4/044005
    [9] 何甦. 低温好氧污泥活性的影响因素研究[D]; 江苏: 南京大学, 2020.
    [10] ZHANG L H, ZHAO Q N, ZHANG M S, et al. Mg2+ distribution in activated sludge and its effects on the nitrifying activity and the characteristics of extracellular polymeric substances and sludge flocs[J]. Process Biochemistry, 2020, 88: 120-128. doi: 10.1016/j.procbio.2019.10.002
    [11] SINDHU L, NIU K L, LIU X L, et al. Effect of Fe2+ addition on anammox consortia, nitrogen removal performance and functional genes analysis during start-up of anammox process[J]. Journal of Water Process Engineering, 2021, 43: 102251. doi: 10.1016/j.jwpe.2021.102251
    [12] 樊艳丽, 孔秀琴, 牛佳雪. 钙离子浓度对活性污泥处理系统脱氮效果的影响[J]. 石油学报(石油加工), 2014, 30(5): 921-927.
    [13] ZHANG H M, XIA J, YANG Y, et al. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors[J]. Journal of Environmental Sciences, 2009, 21(8): 1066-73. doi: 10.1016/S1001-0742(08)62383-9
    [14] ARABI S, NAKHLA G. Impact of cation concentrations on fouling in membrane bioreactors[J]. Journal of Membrane Science, 2009, 343(1): 110-118.
    [15] 韩成龙, 赵凌云, 段冰, 等. A2/O工艺中溶解性有机氮的分子转化与生物有效性特征[J]. 中国环境科学, 2023, 43(4): 1610-1619.
    [16] HU H D, LIAO K W, WANG J F, et al. Effect of influent carbon-to-nitrogen ratios on the production and bioavailability of microorganism-derived dissolved organic nitrogen (mDON) in activated sludge systems[J]. ACS ES& T Water, 2021, 1(9): 2037-2045.
    [17] HU H D, LIAO K W, SHI Y J, et al. Effect of solids retention time on effluent dissolved organic nitrogen in the activated sludge process: studies on bioavailability, fluorescent components, and molecular characteristics[J]. Environmental Science & Technology, 2018, 52(6): 3449-3455.
    [18] ZHANG B L, SHAN C, WANG S, et al. Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis[J]. Water Research, 2021, 188: 116484. doi: 10.1016/j.watres.2020.116484
    [19] HU H D, ZHU B Y, HAN L Q, et al. Effect of carrier filling ratios on dissolved organic nitrogen removal in integrated fixed-film activated sludge systems treating municipal wastewater[J]. ACS ES& T Engineering, 2021, 1(4): 761-769.
    [20] DU Y, DENG Y M, LIU Z H, et al. Novel insights into dissolved organic matter processing pathways in a coastal confined aquifer system with the highest known concentration of geogenic ammonium[J]. Environmental Science & Technology, 2021, 55(21): 14676-14688.
    [21] LIAO K W, HU H D, MA S J, et al. Effect of microbial activity and microbial community structure on the formation of dissolved organic nitrogen (DON) and bioavailable DON driven by low temperatures[J]. Water Research, 2019, 159: 397-405. doi: 10.1016/j.watres.2019.04.049
    [22] HAMMES F, GOLDSCHMIDT F, VITAL M, et al. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments[J]. Water Research, 2010, 44(13): 3915-3923. doi: 10.1016/j.watres.2010.04.015
    [23] FILIPIČ J, KRAIGHER B, TEPUŠ B, et al. Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida[J]. Bioresource Technology, 2012, 120: 225-232. doi: 10.1016/j.biortech.2012.06.023
    [24] NIU C, GENG J J, REN H Q, et al. The strengthening effect of a static magnetic field on activated sludge activity at low temperature[J]. Bioresource Technology, 2013, 150: 156-162. doi: 10.1016/j.biortech.2013.08.139
    [25] HU H D, MA S J, ZHANG X X, et al. Characteristics of dissolved organic nitrogen in effluent from a biological nitrogen removal process using sludge alkaline fermentation liquid as an external carbon source[J]. Water Research, 2020, 176: 115741. doi: 10.1016/j.watres.2020.115741
    [26] SCHLOSS PATRICK D, WESTCOTT SARAH L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-3541. doi: 10.1128/AEM.01541-09
    [27] TANG C, ZHANG X, WANG R, et al. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater[J]. Environmental Research, 2022, 207: 112228. doi: 10.1016/j.envres.2021.112228
    [28] SATTAYATEWA C, PAGILLA K, PITT P, et al. Organic nitrogen transformations in a 4-stage Bardenpho nitrogen removal plant and bioavailability/biodegradability of effluent DON[J]. Water Research, 2009, 43(18): 4507-16. doi: 10.1016/j.watres.2009.07.030
    [29] LEE S H, YOO B H, KIM S K, et al. Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters[J]. Journal of Hazardous Materials, 2013, 261: 29-37. doi: 10.1016/j.jhazmat.2013.06.072
    [30] 汪杰, 郑芳, 柴文波, 等. 含氮有机物在污水处理过程中的生物转化机制与模型研究进展[J]. 微生物学通报, 2021, 48(5): 1717-1726. doi: 10.13344/j.microbiol.china.200797
    [31] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142-8149.
    [32] YANG Y Y, TFAILY M M, WILMOTH J L, et al. Molecular characterization of dissolved organic nitrogen and phosphorus in agricultural runoff and surface waters[J]. Water Research, 2022, 219: 118533. doi: 10.1016/j.watres.2022.118533
    [33] MCDONOUGH L K, ANDERSEN M S, BEHNKE M I, et al. A new conceptual framework for the transformation of groundwater dissolved organic matter[J]. Nature Communications, 2022, 13(1): 2153. doi: 10.1038/s41467-022-29711-9
    [34] HUANG H, LIN Y, PENG P, et al. Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers[J]. Water Research, 2018, 133: 37-46. doi: 10.1016/j.watres.2018.01.010
    [35] BREZONIK P L, PATTERSON J W. Activated sludge ATP: Effects of environmental stress[J]. Journal of the Sanitary Engineering Division, 1971, 97(6): 813-824. doi: 10.1061/JSEDAI.0001341
    [36] HE S M, MCMAHON K D. ‘Candidatus Accumulibacter’ gene expression in response to dynamic EBPR conditions[J]. The ISME Journal, 2011, 5(2): 329-340. doi: 10.1038/ismej.2010.127
    [37] ZHU L R, WU B C, LIU Y L, et al. Strategy to enhance semi-continuous anaerobic digestion of food waste by combined use of calcium peroxide and magnetite[J]. Water Research, 2022, 221: 118801. doi: 10.1016/j.watres.2022.118801
    [38] HAN Z S, TIAN J Y, LIANG H, et al. Measuring the activity of heterotrophic microorganism in membrane bioreactor for drinking water treatment[J]. Bioresource Technology, 2013, 130: 136-143. doi: 10.1016/j.biortech.2012.11.151
    [39] LI K, QIAN J, WANG P F, et al. Toxicity of three crystalline TiO2 nanoparticles in activated sludge: bacterial cell death modes differentially weaken sludge dewaterability[J]. Environmental Science & Technology, 2019, 53(8): 4542-4555.
    [40] 张兰河, 王佳平, 陈子成, 等. Ca2+对序批式生物反应器活性污泥性能的影响[J]. 化工进展, 2018, 37(9): 3675-3681.
    [41] 张兰河, 赵倩男, 张海丰, 等. Ca2+对污泥硝化活性和絮凝沉降性能的影响[J]. 环境科学, 2019, 40(9): 4160-4168.
    [42] MA S J, DING L L, HUANG H, et al. Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge[J]. Bioresource Technology, 2016, 214: 645-652. doi: 10.1016/j.biortech.2016.04.132
    [43] LOFFELD B, KEWELOH H. cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity inPseudomonas putida P8[J]. Lipids, 1996, 31(8): 811-815. doi: 10.1007/BF02522976
    [44] MURATA N, LOS D A. Membrane fluidity and temperature perception[J]. Plant Physiol, 1997, 115(3): 875-879. doi: 10.1104/pp.115.3.875
    [45] MA S J, DING L L, HU H D, et al. Cell membrane characteristics and microbial population distribution of MBBR and IFAS with different dissolved oxygen concentration[J]. Bioresource Technology, 2018, 265: 17-24. doi: 10.1016/j.biortech.2018.03.111
    [46] RAMOS J L, DUQUE E, GALLEGOS M-T, et al. Mechanisms of solvent tolerance in gram-negative bacteria[J]. Annual Review of Microbiology, 2002, 56(1): 743-768. doi: 10.1146/annurev.micro.56.012302.161038
    [47] GARCíA A, VALENZUELA E I, VARGAS A, et al. Wastewater treatment potential, light penetration profile and biomass settling performance of a photo-sequencing batch reactor[J]. Journal of Chemical Technology & Biotechnology, 2023, 98(2): 346-356.
  • 加载中
图( 7)
计量
  • 文章访问数:  2477
  • HTML全文浏览数:  2477
  • PDF下载数:  70
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-26
  • 录用日期:  2023-11-16
  • 刊出日期:  2023-11-26
游佳倩, 谢琤琤, 廖可薇, 胡海冬. 外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响[J]. 环境工程学报, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116
引用本文: 游佳倩, 谢琤琤, 廖可薇, 胡海冬. 外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响[J]. 环境工程学报, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116
YOU Jiaqian, XIE Chengcheng, LIAO Kewei, HU Haidong. Effect of exogenous calcium ions on characteristics of dissolved organic nitrogen in aerobic activated sludge reactors[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116
Citation: YOU Jiaqian, XIE Chengcheng, LIAO Kewei, HU Haidong. Effect of exogenous calcium ions on characteristics of dissolved organic nitrogen in aerobic activated sludge reactors[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3505-3514. doi: 10.12030/j.cjee.202309116

外源钙离子对好氧活性污泥反应器溶解性有机氮特征的影响

    通讯作者: 谢琤琤(1978—),女,硕士,chengchengxie@sina.com;  胡海冬(1989—),男,博士,副教授,hdhu@nju.edu.cn
    作者简介: 游佳倩 (2000—) ,女,硕士研究生,jiaqianyou@smail.nju.edu.cn
  • 1. 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京 210023
  • 2. 中持新概念环境发展宜兴有限公司,宜兴 214200
基金项目:
国家自然科学基金面上项目 (52170036) ;江苏省自然科学青年基金资助项目(BK20180346)

摘要: 为探明外源钙离子对好氧活性污泥系统溶解性有机氮 (DON) 的影响,考察了不同钙离子浓度下 (0~1 mmol·L−1) 出水DON浓度和生物有效性的变化,并结合傅里叶变换离子回旋共振质谱 (FTICR-MS) 及微生物代谢活性和群落结构分析探究钙离子影响的分子层面原因和微生物内在机理。结果表明,出水DON的浓度和生物有效性随着外源钙离子浓度的增加均呈现阈值现象,在最佳钙离子投加阈值浓度 (0.1 mmol·L−1 Ca2+) 下,出水DON浓度和生物有效性为1.46±0.12 mg·L−1和17.97%±0.05%,比空白组 (0 mmol·L−1 Ca2+) 分别增加了35.2%和降低了47.6%。FTICR-MS分析DON的分子特征显示,钙离子是通过影响好氧活性污泥反应器中氧化程度较低分的组分 (NOSC<0) 影响了最终出水DON的生物有效性。微生物学分析表明,三磷酸腺苷、琥珀酸脱氢酶、脱氢酶、饱和脂肪酸和Luteolibacter菌是推动出水DON去除率提升和生物有效性降低的重要因素。

English Abstract

  • 城市污水排放是地表水最重要的人为氮源污染之一[1]。近年来,为了更好地调控受纳水体的富营养化风险,污水处理厂的总氮排放标准越来越严格,包括美国、欧洲和中国的部分地区甚至要求出水达到超低总氮排放限值 (5~10 mg·L−1) [2]。除了溶解性无机氮 (即氨氮、硝态氮和亚硝态氮) ,溶解性有机氮 (DON) 作为污水处理厂重要的出水氮组分越来越受到关注。特别是在无机氮脱除技术不断提标以及总氮排放限值愈发严苛的背景下,DON在污水总氮中的占比越来越高 (>65%) [3]。以往的研究表明,DON是一种潜在的生物可利用氮源,相当一部分DON可以很容易的被藻类和细菌利用[4]。EAM等[5]研究发现DON表现出比无机氮更强的刺激浮游植物生长的能力。目前常使用可以支持藻类生长的DON占总DON的比例来代表DON的生物有效性,用以表征污水DON的富营养化潜能[6-7]。活性污泥法是污水处理厂中最广泛应用的技术,其中好氧活性污泥法比厌氧和缺氧活性污泥法更容易导致较高的出水DON浓度[8]。因此,探讨调控好氧活性污泥法中DON的技术方法,尤其是从生物有效性的角度,对于有效保护受纳水体水质具有重要的意义。

    投加外源金属二价阳离子 (如Mg2+、Ca2+、Fe2+、Mn2+) 可以通过影响微生物的表面电荷分布,酶活性等方式影响活性污泥系统的水处理能力影响出水水质[9]。例如,ZHANG等[10]研究发现投加镁离子 (Mg2+) 浓度低于1.1 mmol·L−1时,好氧活性污泥硝化活性显著提高,但在镁离子浓度达到3 mmol·L−1时硝化活性受到抑制。SINDHU等[11]在厌氧氨氧化系统中发现亚铁离子 (Fe2+) 添加对污泥胞外聚合物产量和脱氮效果有很大影响,当添加1 mmol·L−1 Fe2+时,氨氮和硝态氮去除率可以分别达到94.33%和94.84%。樊艳丽等[12]发现钙离子 (Ca2+) 会影响活性污泥系统的总氮 (TN) 去除率。所以投加适量外源金属离子常被用作强化好氧活性污泥处理性能的方法。其中,Ca2+被发现可以能够影响污泥的代谢产物,如胞外聚合物 (EPS) 和微生物溶解性产物 (SMP) 。这些代谢产物主要是蛋白质和多糖,与污水中的DON直接相关。ZHANG等[13]发现投加168.5 mg·L−1的钙离子能够有效减少微生物絮体中松散结合的EPS和上清液中SMP。ARABI和NAKHLA[14]也在140 mg·L−1的钙离子投加量下发现了污泥上清液中SMP的降低。综上表明,向活性污泥系统适量投加钙离子具有调控出水DON的潜力。然而,目前对于钙离子对好氧活性污泥DON的影响及内在微生物作用机理仍不明确。

    本研究旨在探究外源钙离子对好氧活性污泥DON及其生物有效性的影响,并基于超高分辨率的傅里叶变换离子回旋共振质谱 (FTICR-MS) 分析DON的分子特征,解释其生物有效性变化的原因。最后,通过分析微生物的生理变化特征及群落结构尝试从微生物角度阐释钙离子影响好氧活性污泥DON的内在机理。本研究的结果将为污水处理厂中好氧活性污泥法的出水DON控制提供实践指导,以更好地调控出水氮的富营养化潜能,降低污水排放对于水环境的负面影响。

    • 本研究以钙离子浓度为外源物质,设置钙离子浓度水平为0.01、0.05、0.1以及1 mmol·L−1为实验组、钙离子浓度水平为0 mmol·L−1为对照组,探究外源投加钙离子对好氧活性污泥DON去除效果的影响。采用实际废水 (市政污水厂一级处理出水) 作为进水,本研究中进水的COD是126.73~172.38 mg·L−1、TN浓度是29.74~44.07 mg·L−1、TP浓度是2.51~3.27 mg·L−1、DON浓度是7.94~12.32 mg·L−1。当地的市政污水厂一级出水的DON浓度也基本在5.94~13.92 mg·L−1范围内,这表明本研究的进水有机氮水平具有代表性。本研究通过外加CaCl2调节水中钙离子浓度,每个浓度水平设置2个平行,搭建好氧活性污泥反应器。监测指标为反应器出水中的基本水质参数 (COD、无机氮各项指标、DON) 、DON分子组成以及微生物特性。反应器运行3个SRT后各项基本水质指标趋于稳定。

    • 化学需氧量 (COD) 采用快速密闭催化消解法测定[15]。DON的浓度表示为总溶解氮 (TDN) 减去所有的无机氮,包括氨氮 (NH4+-N) 、硝态氮 (NO3-N) 和亚硝态氮 (NO2-N) 。TDN测定通过过硫酸盐消化法将样品氧化成NO3-N,然后采用离子色谱法定量NO3-N的浓度[16]。NH4+-N采用水杨酸法进行测定。NO3-N和NO2-N使用离子色谱法 (Dionex ICS-1100,美国赛默飞世尔科技有限公司) 进行测定[16]

    • 首先采用14 d藻类生物培养实验测定可被藻类利用的DON (ABDON) 。选用中国科学院淡水藻种库 (FACHB-collection) 中被广泛用于水体富营养化表征的羊角月牙藻 (Selenastrum capricornutum) 作为测试藻种。将1.5 mL的藻类接种液和1 mL污水厂的混合培养菌添加到250 mL锥形瓶中的100 mL污水DON样品中。将锥形瓶置于22~25 ℃的温控摇床中培养,提供12 h∶12 h的光照:黑暗条件以模拟藻类生长真实环境条件[6]。用去离子水作为对照组。生物有效性的计算公式如式(1)和式(2)[17]

      式中:ABDON代表可被藻类利用的DON浓度,mg·L−1;DONi和DONf分别代表污水样品培养前后的DON浓度,mg·L−1;DONbi和DONbf分别代表去离子水样品培养前后的DON浓度,mg·L−1

    • 所有的污水样品均采用PPL固相萃取柱来富集DON。在萃取之前,首先使用HPLC级的甲醇和盐酸溶液 (pH=2) 活化萃取柱。然后,将酸化后的水样 (pH=2,由盐酸调整) 以2 mg·min−1的流速通过PPL柱,随后使用pH=2的盐酸溶液冲洗柱子,并用氮气吹扫干燥[18]。最后,使用10mL甲醇对PPL柱进行洗脱[18]。洗脱液用甲醇稀释后以供进一步FTICR-MS分析。本研究采用15 T FTICR-MS (Bruker,德国布鲁克光谱仪器有限公司) ,配备负离子模式的电喷雾电离 (ESI) 源,分析样品中DON的分子组成。用注射泵将样品以180 μL·h−1的流速注入ESI源。使用Bruker数据分析软件 (v.4.1) 对原始峰进行识别,筛选出质量在200~700 m/z范围内信噪比S/N>6的峰进行分子式计算[19]。分子式根据以下元素进行分配:碳 (C,2~50) 、氧 (O,0~30) 、氢 (H,2~120) 、氮 (N,0~6) 、磷 (P,0~2) 和硫 (S,0~2) 。原子数量之间必须满足2≤H≤(2C+2)、O≤(C+2)、O/C<1.2、0.333≤H/C≤2.25、N/C<0.5、S/C<0.2、P/C<0.1、(S+P)/C<0.2、P<O/3,用以排除极不可能在DON中出现的分子式。本研究采用不饱和等效双键数 (DBE) 和碳的平均氧化态 (NOSC) 来表征DON的分子特征,计算公式如式(3)和式(4)[20]

    • 本研究选择三磷酸腺苷 (ATP) 、琥珀酸脱氢酶 (SDH) 、脱氢酶 (DHA) 、比耗氧速率 (SOUR) 探究不同外源钙离子浓度下好氧活性污泥的微生物活性[21]。ATP浓度使用 BacTiter-Glo™ 微生物细胞活性检测试剂盒进行测定[22]。SDH活性采用琥珀酸脱氢酶活性比色测定试剂盒测定,SDH的最终浓度通过BCA蛋白质测定试剂盒测量的蛋白质浓度进行标准化[21]。DHA活性通过测量 2,3,5-三苯基氯化四氮唑 (TTC) 还原成三苯基甲臜 (TPF) 的量来测定[23]。SOUR通过使用溶解氧测量仪测定一定时间内好氧活性污泥的耗氧量进行计算。另外,本研究还通过测定微生物细胞膜上磷脂脂肪酸 (PLFA) 的变化知识微生物活动的变化。PLFA分析依据NIU等[24]提供的方法进行,包括分离、洗脱、萃取和皂化甲基化。使用固相萃取柱分离得到磷脂,皂化甲基化后的脂肪酸甲酯采用气相色谱仪 (Agilent 7890,美国安捷伦科技有限公司) 测定,最后使用MIDI Sherlock微生物鉴定系统对结果进行分析。

    • 从好氧污泥反应器中各收集3个平行的污泥样本,使用 FastDNA土壤试剂盒对s6个反应器中的污泥进行 DNA 提取。然后,DNA提取物被送往上海生工生物工程技术服务有限公司进行16S rRNA基因PCR扩增,PCR产物纯化和随后的Illumina MiSeq测序[25]。最后,使用Mothur软件包 (v.1.35.1) 进行数据分析[26]

    • 采用SPSS统计软件进行显著性差异分析 (单因素方差分析,ANOVA) ,当p值为<0.05认为是差异是显著的。冗余分析 (RDA) 使用CANOCO 4.5软件进行,用以探讨DON浓度及特征与微生物之间的相关关系[25]

    • 通过对比5组反应器出水DON浓度,可探究外加钙离子对于好氧活性污泥反应器DON去除效率的影响。由图1可知,随着外加钙离子浓度的增加,反应器出水DON的浓度表现出先降低后增加的趋势。其中,空白组出水DON浓度为(2.19±0.18) mg·L−1 (0 mmol·L−1,Ca2+) ,当外加钙离子浓度为0.01~1 mmol·L−1,出水DON浓度为1.46~2.13 mg·L−1。增效阈值的现象存在于外加钙离子对于好氧活性污泥去除DON的作用中。对于本研究中设定实验条件,外加钙离子对于提高好氧活性污泥反应器DON去除效果的阈值为0.1 mmol·L−1,此时出水DON浓度为1.46±0.12 mg·L−1, 出水DON浓度相比于空白组降低了33.3%。当外加钙离子浓度低于0.1 mmol·L−1,随着钙离子浓度增加,出水DON浓度降低;当外加钙离子浓度高于0.1 mmol·L−1,随着钙离子浓度增加,出水DON浓度升高。同时,对比其他基本出水水质指标可知,外加钙离子在其中的增效作用阈值同样为0.1 mmol·L−1。TANG等[27]研究在微藻-细菌共生系统中也观察到相似的结果,较低的钙离子 (Ca2+) 负荷 (即0.1 mmol·L−1) 可以促进中COD和营养物质的去除。因此,对于基本水质以及出水DON浓度而言,0.1 mmol·L−1的外加钙离子浓度是提高好氧活性污泥反应器处理性能的最佳取值。

      图2所示,出水生物DON的生物有效性与DON浓度随外加钙离子浓度的增加先降低后增加,也呈现出相似的阈值现象。空白组出水DON有效性为34.29%±0.06% (0 mmol·L−1,Ca2+) 。当外加钙离子浓度为从0.01 mmol·L−1增加到0.1 mmol·L−1时,好氧活性污泥出水的DON生物有效性从30.60%±0.05%降低至17.97%±0.05%;当外加钙离子浓度提高到0.1 mmol·L−1时,DON的生物有效性又提高至18.54%±0.04%。生物有效性DON基于藻类生长表征DON的富营养化潜能,能够更加直接地呈现外加钙离子对于好氧活性污泥反应器出水对于自然水体水质的影响[28]。因此上述结果表明,对于本研究的实验条件,基于DON的生物有效性,0.1 mmol·L−1仍是外源钙离子对于降低好氧活性污泥反应器DON生物有效性、管控DON富营养化潜能排放的最佳阈值浓度,此时DON的生物有效性相比于空白组降低了47.6%。值得讨论的是,城市污水处理厂中的一般本底钙离子浓度为30~60 mg·L−1 (0.75~1.5 mmol·L−1) [29]。本研究中0.1 mmol·L−1的钙离子最佳投加浓度阈值对于体系造成的改变并不算是极少的。因此,在考虑了实际污水处理厂的本底钙离子浓度水平后,本研究中所应用的外源钙离子浓度仍然具有能够显著影响好氧活性污泥系统的潜力。

    • DON的生物有效性与它的分子化学性质密切相关[30]。为了从分子层面解析外加钙离子对好氧活性污泥反应器出水DON生物有效性的影响,采用FTICR-MS进一步分析DON的分子组成特征 (图3) 。NOSC通常用来反应分子的氧化还原状态,而氧化还原状态已经被证实与微生物活动密切相关[31]。已有研究指出,低平均碳氧化态的DON分子 (NOSC<0) 主要包括氨基酸、脂质、蛋白质和不饱和烃[32],这些分子更容易被藻类微生物降解利用[33],因此是高生物有效性的组分。ZHANG等[18]在研究中发现NOSC与难降解的芳香化合物 (用SUVA254指示) 和类腐殖酸呈现负相关,这也侧面证实了低NOSC的分子可能更加容易生物降解。因此,本研究选择NOSC<0的分子代表高生物有效性的分子。

      图3所示,不同外加钙离子浓度下,好氧活性污泥的DON分子均主要分布在NOSC<0的高生物有效性区域。这与HUO等[8]在A/A/O工艺中关于好氧活性污泥产生更多容易降解的微生物代谢DON的推测一致。韩成龙等[15]也发现好氧段出水中易生物降解的DON占比更高。此外,好氧活性污泥反应器出水中NOSC<0的DON分子数量随外加钙离子浓度变化的趋势与由藻类直接测定的生物有效性变化相同,呈现先减少后增加的趋势,且阈值同样出现在0.1 mmol·L−1 (图3) 。空白组出水DON中位于高生物有效性区域的分子最多 (0 mmol·L−1,Ca2+) 。当外加钙离子浓度在0~0.1 mmol·L−1范围内逐渐增加时,NOSC<0的DON分子逐渐减少;当外加钙离子浓度大于0.1 mmol·L−1时,NOSC<0的DON分子增加。因此可以合理推断外加钙离子通过影响好氧活性污泥反应器中氧化程度较低的分子 (NOSC<0) 影响DON的生物有效性,从而调控出水DON的富营养化潜能。

    • 在好氧活性污泥系统中,DON的去除依赖活性污泥微生物的降解与转化作用。并且,已有研究探明,适量浓度的外加钙离子可以增加活性污泥系统的TN去除能力[12]。微生物在好氧活性污泥脱氮的过程中扮演着关键角色,介导了外加钙离子对于DON浓度的影响。出水DON是出水TN的重要组成部分,因此可从微生物学角度进行阐述外加钙离子调控DON去除过程的机理。据已有研究报道,外加钙离子可通过改变微生物活性、驯化相应的微生物、促进微生物群落的演替,从而改变系统中微生物的水处理能力,进而改变出水水质[34]。其中,微生物活性涉及微生物酶活、微生物活性物质,或其他可指代微生物活性的相关指标,如ATP、DHA酶活、SDH酶活、SOUR等[21, 23]。本研究通过分析不同外加钙离子浓度下微生物活性的变化以及微生物群落结构的演替,解析外加钙离子调控DON去除过程的内在机理。

      微生物ATP测试结果如图4(a)所示,空白组中,ATP浓度为(10.32±0.93) μg· (g MLSS) −1;实验组中,随着外加钙离子浓度逐渐升高,ATP浓度出现先增后减趋势,ATP浓度分别为(12.35±0.55) μg· (g MLSS) −1 (0.01 mmol·L−1 Ca2+) 、(17.02±0.79) μg· (g MLSS) −1 (0.05 mmol·L−1 Ca2+) 、(16.62±0.21) μg· (g MLSS) −1 (0.1 mmol·L−1 Ca2+)、(8.97±0.92) μg· (g MLSS) −1 (1 mmol·L−1 Ca2+) 。对比空白组与实验组结果可知,外加钙离子对于ATP的作用同样具有阈值效应。ATP是为微生物生长代谢过程提供能量的物质,一定程度上ATP浓度的升高可表明微生物生长代谢活动的增加,因此活性污泥中ATP的浓度可指示微生物活性的高低[35]。升高的ATP表明外加钙离子可在一定程度上提高微生物的代谢活性。

      SDH酶、DHA酶与ATP相似,是表征微生物代谢活性过程中常见的指示物质。如图4(b)所示,SDH酶浓度为(16.89±0.67) U· (mg protein)−1 (0 mmol·L−1,Ca2+)、(22.01±1.08) U· (mg protein)−1 (0.01 mmol·L−1,Ca2+)、(24.49±0.81) U· (mg protein)−1 (0.05 mmol·L−1,Ca2+)、(26.95±2.11) U· (mg protein)−1 (0.1 mmol·L−1,Ca2+) 、(14.42±0.64) U· (mg protein)−1 (1 mmol·L−1,Ca2+) ,结果表明外源钙离子添加浓度为0.05~0.1 mmol·L−1时,SDH酶活较高、微生物代谢能力较强。该结果显示的钙离子浓度的阈值 (0.1 mmol·L−1) 与本研究中好氧活性污泥的DON浓度和DON生物有效性所呈现的阈值一致。SDH酶是三羧酸循环中的关键酶,可作为评价三羧酸循环的指标[36]。已有研究表明生物有效性的DON包括氨基酸、脂质等分子,而三羧酸循环作为糖类、脂类和氨基酸的最终代谢通路[37],能够影响微生物对这部分DON的去除。因此SDH酶活变化一定程度上反映了出水DON生物有效性变化的原因。另外注意到,SDH酶活性与ATP浓度随钙离子浓度变化的趋势类似,但外加钙离子对于SDH酶活的阈值为0.1 mmol·L−1,而对于ATP的阈值为0.05 mmol·L−1,二者略有区别。这种阈值的差别可能与两种酶在微生物代谢过程中的功能差异相关。另一方面,微生物降解污染物时,有机物在微生物细胞中的氧化作用一般通过脱氢作用获得能量,DHA酶是微生物代谢过程发挥作用的重要生物酶[38]。如图4(d)所示,DHA酶在外加钙离子浓度为0.05 mmol·L−1时,具有最大活性,为(7.17±0.22) mg TF·(g MLSS) −1。总体而言,随着外加钙离子浓度升高,3种生物酶活性变化趋势相近,均为活性先增加至某一阈值后降低。这表明,外加钙离子可能通过影响与微生物代谢活动有关的酶活性影响到DON,尤其是生物有效性DON的去除。

      在现有研究中,常使用SOUR表示单位时间内单位质量活性污泥消耗氧气的体积。在好氧活性污泥系统中,好氧微生物氧化有机物产能代谢的过程主要是以氧气作为最终电子受体。因此相应地,SOUR数值的大小也可直接反映好氧活性污泥系统中微生物活动的变化[39]。如图4(c)所示,随着外加钙离子浓度由0.01 mmol·L−1增加至0.1 mmol·L−1,SOUR数值逐渐上升;当外加钙离子浓度增加至1 mmol·L−1,SOUR数值虽略有下降,但与钙离子浓度为0.1 mmol·L−1时无统计学意义的差别 (p>0.05,ANOVA) 。SOUR与DON浓度和生物有效性相近的阈值现象也进一步证明了外加钙离子导致的DON浓度及DON生物有效性的变化与微生物代谢有机物的活性密切相关。综上所述,一定浓度的外加钙离子能够提高好氧活性污泥中微生物的代谢活性,通过增强微生物对有机物的氧化代谢提高有机物的去除率,从而降低了好氧出水的DON。张兰河等[40]也在研究中发现适量外源钙离子的投加提高了活性污泥体系中DHA酶活性和SOUR。虽然外源钙离子在提高微生物代谢活性的同时增加了EPS的合成,但带正电的钙离子可以与EPS表面带负电的官能团形成架桥,二者的络合不仅提高了污泥的絮凝沉降性能,也使得松散结合型EPS的比例 (LB-EPS/EPS) 降低[40-41]。由于LB-EPS与SMP的形成密切关联[13],且SMP中由微生物产生的蛋白质等物质又是生物有效性DON的重要组成部分,因此钙离子与EPS的络合作用也一定程度上支持了本研究中适量外源钙离子促进出水DON影响浓度及生物有效性降低的发现。

      除了生物酶活,微生物细胞膜的组成也可以作为辅助指标指示微生物活性的变化。PLFA是微生物细胞膜磷脂双分子层的主要组成部分,多存在于活性微生物中,微生物死亡后PLFA会被迅速降解。并且PLFA可进一步分类为饱和脂肪酸 (SFA) 、不饱和脂肪酸 (UFA) 、异构脂肪酸 (IFA) 和反式异构脂肪酸 (AFA) [42]图5展示了不同外加钙离子浓度对微生物细胞膜的影响。结果表明,5组反应器中,饱和脂肪酸 (SFA) 在细胞膜组成中相对丰度由大到小为:外加钙离子浓度为0.1 mmol·L−1时 (69.91%) >外加钙离子浓度为0.05 mmol·L−1时 (64.79%) >外加钙离子浓度为1 mmol·L−1时 (62.35%) >外加钙离子浓度为0.01 mmol·L−1时 (56.40%) >空白组(55.37%)。不饱和脂肪酸 (UFA) 在细胞膜组成中相对丰度由大到小为:空白组 (28.79%) >外加钙离子浓度为0.01 mmol·L−1时 (26.58%) >外加钙离子浓度为0.05 mmol·L−1 (24.95%) >外加钙离子浓度为1 mmol·L−1时 (22.79%) >外加钙离子浓度为0.1 mmol·L−1时 (20.69%) 。细胞膜组成中的饱和脂肪酸与不饱和脂肪酸是评价细胞膜流动性的重要指标。已有研究报道,微生物在环境影响下会自发改变细胞膜PLFA组成,通过调节饱和脂肪酸/不饱和脂肪酸在细胞膜中的占比调节细胞膜流动性[42]。基于不同外加钙离子浓度下好氧活性污泥反应器中DON浓度的变化结果,外加钙离子浓度为0.1 mmol·L−1为提高好氧活性污泥反应器去除DON效率的最佳取值。当外加钙离子浓度为0.1 mmol·L−1时细胞膜饱和脂肪酸占比最高 (64.79%),不饱和脂肪酸 (20.69%) 和反式异构脂肪酸占比最低 (5.12%) 。在微生物细胞膜组成中,反式异构脂肪酸具有与不饱和脂肪酸相同的作用,通过破坏磷脂酰基链的紧密堆积从而改变细胞膜流动性[43-44]。因此,反式异构脂肪酸在细胞膜中相对丰度增加,会提高细胞膜流动性。据报道,细胞膜的流动性极大地影响了微生物胞内许多与结构或功能无关的化合物的运输和排出,这可能对微生物代谢的DON产物的释放产生重要影响[45-46]。MA等[45]研究表明细胞流动性越低,出水蛋白质含量越低。在本研究中,出水DON浓度和生物有效性最低时 (外加钙离子浓度为0.1 mmol·L−1) ,细胞膜组成的分析结果都表明了细胞膜组成转变为流动性更低的状态,这可能阻滞了微生物代谢产生的DON的排放,从而使得在该浓度下能达到最佳的出水DON排放浓度和生物有效性。

      微生物群落结构是影响好氧活性污泥系统水处理效果的重要因素之一。因此,对比5组反应器在不同外加钙离子浓度下微生物群落结构的变化,可进一步解析最优钙离子投加条件下 (外加钙离子浓度为0.1 mmol·L−1) 促使DON去除效率最高的原因。图6展示了5组反应器在稳定期微生物群落在属水平的分布。除尚无对应分类名录的菌种外,在属水平上的主要微生物菌种 (按照5组反应器中相对丰度值由大到小) 为Saccharibacteria_genera_incertae_sedisPropionicicellaLuteolibacterFerruginibacterDefluviimonasDechloromonasRhodoferaxBlastocatellaSphingorhabdusFerribacterium等。其中值得注意的是,Luteolibacter为微生物群落中发挥降解有机物作用的好氧菌[47],是指示微生物群落对有机物去除能力的重要菌种。对比不同外加钙离子浓度下Luteolibacter菌的相对丰度变化可知,当外加钙离子浓度由0.01 mmol·L−1增加至0.1 mmol·L−1时,Luteolibacter菌相对丰度由2.07%富集至7.44%;当外加钙离子浓度由0.1 mmol·L−1增加至1 mmol·L−1时,Luteolibacter菌相对丰度下降至3.56%。这说明Luteolibacter菌在钙离子调控的环境下,其存活状态同样具有生存阈值,在一定范围内,外加钙离子可通过富集时Luteolibacter菌强化系统对有机物去除的能力,从而提高DON去除率。一定程度而言,在外加0.1 mmol·L−1钙离子调控好氧活性污泥系统的DON去除过程中,Luteolibacter菌扮演着不可忽视的作用。因此,外源钙离子可能通过调整微生物群落结构,尤其是提高降解有机物的好氧菌的相对丰度,强化对于好氧活性污泥反应器中DON的去除。

      进一步地,为揭示在外源钙离子调控下,出水DON浓度-出水DON生物有效性-微生物生理生化特性和群落结构之间的相关关系,使用RDA对前述结果 (出水DON浓度、DON生物有效性、微生物生理生化特性、微生物群落结构) 进行深入分析,结果如图7所示。由图7可知,RD1与RD2分别代表了62.4%与10.9%的总差异,对于原始数据解释度大于70%,表明通过冗余分析,原始数据中的变化规律即相关关系仍然得到了较为完整的数据保留,并在一定程度上有映射到RDA二维分析图中。DON和ABDON浓度与外源添加钙离子浓度呈显著负相关,这再一次地证明了,外源添加钙离子对于提高DON去除率、降低DON生物有效性具有积极作用。在外源钙离子的调控下,5组反应器对应的样点表现出显著的组内聚类以及组外分离现象。该现象表明,在钙离子的作用下,5组反应器在微生物生理生化特性和群落结构方面表现出一定统计学意义的差异,这种差异与钙离子浓度以及出水DON浓度之间具有较强的相关性。因此,综合外源钙离子浓度、出水DON浓度、出水DON生物有效性、微生物生理生化特性、微生物群落结构分析结果,冗余分析进一步解释了在外加钙离子调控好氧活性污泥系统中DON去除过程中,微生物扮演了重要的介导传递作用。

    • 1) 外加钙离子对于好氧活性污泥系统去除DON的调控效果具有积极作用,但其强化系统DON去除能力的作用具有阈值。外源钙离子投加最佳取值为0.1 mmol·L−1,在此条件下,可进一步降低33.3%的出水DON浓度,降低DON生物有效性47.6%。

      2) DON分子组成分析得到的最佳钙离子投加条件与DON生物有效性一致,表明外加钙离子是通过影响好氧活性污泥反应器中氧化程度较低分分子 (NOSC<0) 影响了出水DON的生物有效性,从而调控出水DON的富营养化潜能。

      3) 微生物学分析表明,在外源钙离子最佳取值的条件下,系统中ATP、SDH酶、DHA酶这类与微生物代谢密切相关的生物酶活达到较高水平,使得微生物对于有机物降解代谢能力有效提高。同时,微生物细胞膜中饱和脂肪酸相对丰度增加至64.79%,有效降低细胞膜流动状态,减少了微生物代谢DON的排放。微生物群落中发挥有机物降解作用的Luteolibacter菌在外源钙离子最佳取值的条件下富集至7.44%,是推动DON去除率提升的重要因素。

      4) 冗余分析表明了不同外加钙离子浓度下好氧活性污泥微生物在生理特征和群落结构上的显著差异,再次阐明了微生物在影响出水DON浓度和生物有效性过程中的重要介导作用。

    参考文献 (47)

返回顶部

目录

/

返回文章
返回