-
氟是自然界广泛分布的元素之一,亦是人体必须的微量元素之一,但长期暴露于高氟环境中会对人体健康造成危害。自然界中高强度矿石开采尤其对含氟伴生矿石开采会形成高含氟排水或地下水,对当地居民生活用水安全构成威胁[1]。目前,有关地下水除氟技术主要包括吸附法[2]、化学沉淀法[3]、电渗析法[4]及电絮凝法[5]等,但上述方法均存在一定缺陷,如吸附法需消耗一定量化学药剂再生且吸附容量受pH影响较大;化学沉淀法药剂投加量大,产泥量大且难以深度除氟;电渗析法处理成本较高且产生一定量浓水。电絮凝除氟因占地面积小、成本低、除氟效率高,已成为国内外研究的热点,多数研究[5-6]集中于电极材料改性、参数调节控制、除氟机理及组合工艺等。有研究[7]表明,当氟离子质量浓度在3~5 mg·L−1时,在施加同等电量条件下,铝电极体系相比于铁电极体系具有更好的除氟效果;而当进水氟离子质量浓度在6 mg·L−1左右时,相同除氟效率下锌铝复合电极比单纯铝电极体系拥有更好的有机物和悬浮物去除效果[8]。另外,在铝电极体系中,当电流密度为4~15 mA·cm−2,氟离子进水质量浓度为4~6 mg·L−1时,氟离子去除率约在80%~99%,但当pH<5或pH>10时,铝电极体系所形成的氢化铝会发生水解,导致絮体吸附能力下降,除氟效率显著降低[9-10]。有研究在铝电极体系下通过引入钙、镁、氯离子来改变所形成絮体与氟离子的结合状态或提高离子强度以提高氟离子去除效率,并探讨此种情况下的除氟机理[11-12]。但上述研究多集中于低浓度含氟饮用水和地下水,含氟量在1~6 mg·L−1,而对于受外界环境污染的矿区高含氟地下水研究报道较少,并且对于高含氟情况下除氟过程和动力学模型仍需进一步研究。
本研究基于矿区高浓度含氟地下水,采用铝电极电絮凝进行除氟研究,在高氟浓度条件下考察了电流密度、极板间距、进水氟质量浓度及pH对除氟效果及电絮凝除氟动力学饱和常数的影响,建立了矿区高氟情况下地下水除氟动力学模型,以期为地下水除氟动力学过程研究及工程化应用提供参考。
基于电絮凝法处理矿区高浓度含氟地下水动力学分析
Kinetic analysis of treating high fluorine groundwater in mining area by electrocoagulation
-
摘要: 采用铝电极电絮凝体系对矿区高含氟地下水进行处理,研究了高氟浓度下电絮凝除氟过程,分别考察了电流密度、极板间距、进水氟质量浓度及pH对除氟效果和动力学常数的影响,并建立了电絮凝除氟动力学方程模型。结果表明:最佳除氟参数为电流密度为450 A·m−³,极间距为5 mm,pH为6.0~7.0;当进水氟质量浓度为12.1 mg·L−1时,经60 min电絮凝除氟后可使进水氟质量浓度由12.1 mg·L−1降为0.6 mg·L−1以下,整个除氟过程遵循一级反应动力学模型且除氟动力学常数取决于电流密度、极板间距和进水氟质量浓度。絮体结构与成分分析表明,在pH=6.0~7.0条件下,电絮凝体系中主要形成的无定型羟基铝化合物使除氟效果达到最好,较高的进水氟质量浓度有助于提高铝离子利用效率。Abstract: The defluoridation process with aluminum electrode electrocoagulation was used to treat high fluorine groundwater in the mining area. The effects of current density, electrode distance, initial influent fluoride concentration and pH values on the defluoridation effect and kinetic constant were investigated, respectively. The kinetic equation model of defluoridation was also established. The results showed that the fluoride concentration could be reduced from 12.1 mg·L−1 to 0.6 mg·L−1 after 60 minutes of electrocoagulation reaction at the optimal operational parameters: current density of 450 A·m−3, electrode distance of 5 mm and pH 6.0~7.0. The defluorination process followed the first-order reaction kinetic model, and the kinetic constant for defluoridation depended on the current concentration, electrode distance and initial fluoride concentration. The analysis of floc structure and composition showed that the amorphous hydroxy aluminum compound occurred in the electro-flocculation system at pH=6.0~7.0, which resulted in the best fluoride removal effect and high fluoride concentration in the influent water was conducive to the increase of the utilization efficiency of aluminum ions.
-
Key words:
- electrocoagulation /
- defluoridation /
- kinetic model /
- fluorine groundwater in mining area
-
表 1 受污染矿区含氟地下水水质特点
Table 1. Characteristics of fluorine-containing groundwater in contaminated mining area
质量浓度/(mg·L−1) pH 电导率/(mS·cm−1) F− Ca2+ Mg2+ Na+ Cl− SO42- 8.1~19.4 42~63 33~45 252~372 546~781 103~192 6.89~7.41 1.65~2.42 表 2 不同进水氟质量浓度下絮体中Al和F元素分析
Table 2. Al and F elements in flocs at different influent fluoride concentrations
进水氟质量
浓度/( mg·L−1)铝氟质量百分占比/% 铝氟摩尔比 F Al 8.00 0.73 34.1 32.87:1 12.00 1.68 34.2 14.33:1 16.00 2.21 33.9 10.79:1 20.00 2.69 34.0 8.89:1 表 3 pH对电絮凝反应器内絮体颗粒ζ电位及出水溶解性铝影响
Table 3. Influence of pH on the ζ potential of floc particles in EC reactor and dissolved aluminum in effluent
pH 絮体颗粒ζ电位/mV 出水溶解性铝
质量浓度/( mg·L−1)不含氟絮体 含氟絮体 5.0~6.0 28.14 22.02 2.89 6.0~7.0 18.15 12.13 0.64 7.0~8.0 9.06 3.12 1.67 8.0~9.0 −7.32 −11.51 3.76 表 4 不同操作条件下k实验结果
Table 4. Fitting results of Kobs under different operating conditions
电流密度/(A·m−3) 极间距/mm 进水氟质量浓度/(mg·L−1) k实验 150 5 8 0.037 74 300 5 12 0.040 59 450 5 16 0.047 28 600 5 20 0.051 31 150 10 12 0.032 04 300 10 8 0.042 57 450 10 20 0.041 43 600 10 16 0.051 85 150 15 16 0.025 77 300 15 20 0.030 42 450 15 8 0.047 99 600 15 12 0.052 59 150 20 20 0.019 92 300 20 16 0.031 09 450 20 12 0.042 27 600 20 8 0.052 90 表 5 预测方程统计结果
Table 5. Statistical results for the predictive equation
变量 未标准化系数 标准化系数 t 显著性 B 标准误差 Beta 电流密度 5.20×10−5 4.36×10−7 0.839 119.665 0 极板间距 −55.50×10−5 11.00×10−6 −0.357 −50.818 0 进水质量浓度 −81.70×10−5 16.00×10−6 −0.351 −49.995 0 (常量) 39.56×10−3 309.00×10−6 128.008 0 -
[1] 李果, 狄军贞, 吕情绪. 布尔台煤矿高氟地下水分布特征及形成机制研究[J]. 煤炭工程, 2022, 54(7): 122-128. [2] FAN X, PARKER D J, SMITH M D. Adsorption kinetics of fluoride on low cost materials[J]. Water Research, 2003, 37: 4929-4937. doi: 10.1016/j.watres.2003.08.014 [3] HU C Y, LO S L, KUAN W H. Effects of the molar ratio of hydroxide and fluoride to Al(III) on fluoride removal by coagulation and electrocoagulation[J]. Journal of Colloid and Interface Science, 2005, 283: 472-476. doi: 10.1016/j.jcis.2004.09.045 [4] AMOR Z, BARIOU B, MAMERI N, et al. Fluoride removal from brackish water by electrodialysis[J]. Desalination, 2001, 133: 215-223. doi: 10.1016/S0011-9164(01)00102-3 [5] EMAMJOMEH M M, SIVAKUMAR M. An empirical model for defluoridation by batch monopolar electrocagulation/flotation (ECF) process[J]. Journal of Hazardous Materials, 2006, 131: 118-125. doi: 10.1016/j.jhazmat.2005.09.030 [6] SANDOVAL M A, FUENTES R, THIAM A, et al. Arsenic and fluoride removal by electrocoagulation process: A general review[J]. Science of the Total Environment, 2021, 753: 1-26. [7] GOVINDAN K, RAJA M, MAHESHWARI S, et al. Comparison and understanding of fluoride removal mechanism in Ca2+, Mg2+, and Al3+ ion assisted electrocoagulation process using Fe and Al electrodes[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1784-1793. doi: 10.1016/j.jece.2015.06.014 [8] 邵坚, 陆建红, 邹仲勋, 等. 锌铝电极电絮凝法处理高氟饮用水的研究[J]. 中国给水排水, 2009, 25(15): 100-102. doi: 10.3321/j.issn:1000-4602.2009.15.029 [9] ZUO Q, CHEN X, LI W, et al. Combined electrocoagulation and electroflotation for removal of fluoride from drinking water[J]. Journal of Hazardous Materials, 2008, 159(2-3): 452-457. doi: 10.1016/j.jhazmat.2008.02.039 [10] 陈聪聪, 钱光磊, 谢陈鑫, 等. 双铝电极电絮凝处理高含氟地下水的影响因素及动力学分析[J]. 环境工程学报, 2020, 14(5): 1216-1223. doi: 10.12030/j.cjee.201907180 [11] ZHAO H, ZHAO B, YANG W, et al. Effects of Ca2+ and Mg2+ on defluoridation in the electrocoagulation process[J]. Environmental Science & Technology, 2010, 44(23): 9112-9116. [12] HU C Y, LO S L, KUAN W H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes[J]. Water Research, 2003, 37(18): 4513-4523. doi: 10.1016/S0043-1354(03)00378-6 [13] MOUSSA D T, EL-NAAS M H, NASSER M, et al. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges[J]. Journal of Environment Management, 2017, 186(1): 24-41. [14] THAKUR L S, MONDAL P. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation[J]. Journal of Environmental Management, 2017, 190: 102-112. [15] LU J, Li Y, YIN M et al. Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions[J]. Chemical Engineering Journal, 2015, 267: 86-92. doi: 10.1016/j.cej.2015.01.011 [16] ZHU J, ZHAO H, NI J. Fluoride distribution in electrocoagulation defluoridation process[J]. Separation and Purification Technology, 2007, 56(2): 184-191. doi: 10.1016/j.seppur.2007.01.030 [17] OUAISSA Y A, CHABANI M, AMRANE A, et al. Removal of tetracycline by electrocoagulation: kinetic and isotherm modeling through adsorption[J]. Journal of Environmental Chemical Engineering, 2014, 2: 177-184. doi: 10.1016/j.jece.2013.12.009 [18] 梁言, 杨小明, 孙境求, 等. 电絮凝-超滤除氟控铝工艺参数优化[J]. 环境工程学报, 2018, 12(11): 3020-3027. doi: 10.12030/j.cjee.201805096