-
目前,我国众多城市仍保留了大面积的截流式合流制排水系统。在降雨条件下,超出管网截流倍数的雨污混合水通过溢流井或泵站直接排放到受纳水体而造成的污染,称为合流制溢流(combined sewer overflow, CSO)污染[1]。CSO污染具有水质和水量波动大、非连续性的特点,是导致城市黑臭水体、地表水污染的主要原因之一。近年来,随着城市的快速扩张与持续更新,不透水面大幅增加,暴雨突发性污染事件频发,致使CSO流量大、频次多,严重制约了城市面源污染控制。在黑臭水体整治和海绵城市建设的背景下,CSO污染控制成为当前不可回避且亟待解决的重要问题[2]。CSO污染控制措施主要分为源头减量、管道截流、调蓄储存和末端控制[3]。其中,CSO末端控制技术主要采用物理性处理,例如水力旋流分离器[4-5]、混凝沉淀池[6]、高效沉淀池[7]、溶气气浮[8]等,这些技术的优势是能够应对CSO污水的水量大、非连续性的特点,但是对COD指标去除非常有限,难以消除CSO溢流引起的水体污染问题。CSO末端控制也可采用人工湿地[9]、生物滤池[10]等生态、生物处理方法,但在城市区域存在场地受限、投资成本高、无雨期维护困难等难题。
CSO污染中含有较高水平的悬浮物(SS)、总磷(TP)和耗氧有机物(以COD计),混凝气浮是去除污水中SS、TP的有效方法,但对COD去除非常有限。臭氧在水处理领域应用广泛,具有氧化效率高、稳定性强、易现场制取、无二次污染等优点,是降解有机污染物的有力技术手段。现有研究表明,臭氧氧化与混凝气浮存在协同作用,可显著增强污水净化效果。臭氧通过促进混凝剂水解,攻击难凝聚有机物的不饱和结构,强化混凝效果;金属盐混凝剂及其水解产物能够催化臭氧产生氧化性更强的活性氧中间物质,进一步提升有机污染物降解效果[11]。目前,臭氧气浮工艺用于市政污水二级出水处理,以及印染废水、油田采出水等工业废水处理[12-13],均表现出良好的净化效果,但用于CSO污水处理还未见相关报道。
臭氧气浮工艺具有占地面积小、抗冲击负荷、处理效率高等优点,基于此,本文拟对臭氧气浮工艺处理CSO污染进行深入研究,通过实验室小试,探明影响规律和最适反应条件,考察该工艺对CSO典型污染物的去除效果和机制。此外,进一步设计制造臭氧气浮处理CSO的集成化撬装式设备,以武汉市某溢流污水为工程实验对象,考察臭氧气浮设备出水水质和运行稳定性,以期为合流制溢流污染治理提供理论指导和技术依据。
臭氧气浮工艺处理城市合流制溢流污染
Treatment of urban combined sewer overflow pollution by ozone flotation process
-
摘要: 合流制溢流(CSO)污水具有水质水量波动大、非连续产生的特点,采用臭氧气浮技术对CSO污水进行处理,研究该技术对化学需氧量(COD)、总磷(TP)、悬浮固体(SS)等污染指标的控制效果。实验室小试结果表明,在最适工艺条件下,混凝-臭氧同步处理对CSO实际污水SS、TP、COD去除率分别为77.8%、73.6%和57.9%,显著削弱了腐殖质类有机物荧光强度,混凝与臭氧氧化之间表现出良好的协同作用,能够实现CSO污染的有效控制。进一步设计了臭氧气浮撬装式设备,并在武汉市开展了CSO处理现场实验研究,运行结果表明,臭氧气浮工艺系统对SS、TP、COD的平均去除率分别为81.8%、75.4%和61.7%,净化效果良好,实现了对CSO典型污染物的协同治理。通过实验室研究和工程实验结果,证实了臭氧气浮工艺用于CSO污水治理的工程可行性,上述研究结果可为CSO污水的多水质目标协同控制提供理论指导和技术参考。Abstract: Combined sewer overflow (CSO) sewage has the characteristics of large fluctuations of water quality and quantity along with discontinuous generation. Ozone air flotation technology was used to treat CSO wastewater, and its effect on the control of chemical oxygen demand (COD), total phosphorus (TP), suspended solids (SS) and other pollution indicators is studied. Laboratory tests reveal that under the optimal process conditions, the coagulation-ozone simultaneous treatment could remove 77.8% of SS, 73.6% of TP, and 57.9% of COD in actual CSO sewage, respectively, as well as significantly decreased the fluorescence intensity of humus organic matter. A strong synergy effect occurred between coagulation and ozonation in this process and could achieve an effective control of CSO pollution. Furthermore, the skid-mounted ozone flotation equipment was designed, and a field test was conducted for CSO treatment in Wuhan City. The operation results demonstrate that the ozone air flotation process system showed the average removal rates of 81.8%, 75.4% and 61.7% for SS, TP, and COD, respectively, indicating effective purification effects. Through laboratory research and engineering trials, the engineering feasibility of ozone air flotation process for CSO sewage treatment was proved. This study provides both theoretical guidance and technical support for the collaborative control of CSO sewage with diverse water quality targets.
-
表 1 合流制溢流实际污水水质特征
Table 1. Water quality of combined sewer overflows sewage
检测结果 pH SS/(mg·L−1) TP/(mg·L−1) COD/(mg·L−1) UV254/(cm−1) Cl−/(mg·L−1) SO42-/(mg·L−1) 范围 7.32~7.55 36~76 1.77~2.63 63~192 0.0897~0.1796 28.10~51.81 36.77~50.13 平均值 7.44 56 2.2 127.5 0.1347 39.96 43.45 -
[1] 徐祖信, 王卫刚, 李怀正, 等. 合流制排水系统溢流污水处理技术[J]. 环境工程, 2010, 28(S1): 153-156. [2] 程熙, 车伍, 唐磊, 等. 美国合流制溢流控制规划及其发展历程剖析[J]. 中国给水排水, 2017, 33(6): 7-12. [3] 李思远. 合流制管网污水溢流污染特征及其控制技术研究[D]. 北京: 清华大学, 2015. [4] 黄勇强, 刘荣平. 合流制排水系统的集成优化处理[J]. 环境工程, 2014, 32(12): 57-61. [5] LEE D H, MIN K S, KANG J H. Performance evaluation and a sizing method for hydrodynamic separators treating urban stormwater runoff[J]. Water Science and Technology, 2014, 69(10): 2122-2131. doi: 10.2166/wst.2014.125 [6] 张善发, 马鲁铭, 高廷耀. 合流制溢流污水的一级化学强化处理[J]. 中国给水排水, 2005, 21(11): 6-9. [7] 史昊然. 合流制溢流调蓄处理工艺效果评估及优化对策[J]. 中国给水排水, 2021, 37(5): 106-110. [8] MAENG M, KIM H, LEE K, et al. Effect of DAF configuration on the removal of phosphorus and organic matter by a pilot plant treating combined sewer overflows[J]. International Biodeterioration & Biodegradation, 2017, 124: 17-25. [9] MASI F, RIZZO A, BRESCIANI R, et al. Constructed wetlands for combined sewer overflow treatment: Ecosystem services at Gorla Maggiore, Italy[J]. Ecological Engineering, 2017, 98: 427-438. doi: 10.1016/j.ecoleng.2016.03.043 [10] 马晶伟, 林潇, 施周, 等. 生物滤池/生物滞留池组合设施控制CSO污染的效果[J]. 中国给水排水, 2021, 37(19): 131-138. [11] JIN X, JIN P, HOU R, et al. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant[J]. Journal of Hazardous Materials, 2017, 327: 216-224. doi: 10.1016/j.jhazmat.2016.12.043 [12] 刘雨果, 金鑫, 许建军, 等. 电凝聚臭氧化耦合工艺的二级出水处理特性与机理研究[J]. 环境科学学报, 2020, 40(11): 3877-3884. [13] 邱壮, 金鹏康, 王丹, 等. 多级臭氧气浮装置深度处理印染生化出水中试研究[J]. 工业水处理, 2017, 37(8): 53-56. doi: 10.11894/1005-829x.2017.37(8).053 [14] YU D, DIAN L, HAI Y, et al. Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow[J]. Journal of Environmental Management, 2022, 303: 114268. doi: 10.1016/j.jenvman.2021.114268 [15] VENDITTO T, MANOLI K, RAY A K, et al. Combined sewer overflow treatment: Assessing chemical pre-treatment and microsieve-based filtration in enhancing the performance of UV disinfection[J]. Science of the Total Environment, 2022, 807: 150725. doi: 10.1016/j.scitotenv.2021.150725 [16] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [17] EL SAMRANI A G, LARTIGES B S, VILLIÉRAS F. Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization[J]. Water Research, 2008, 42(4/5): 951-960. [18] 罗新浩, 胡勇有, 陈元彩, 等. 臭氧氧化印染工业园废水的效能与机理研究[J]. 环境科学学报, 2022, 42(12): 12-21. [19] 杨晓斌. 混凝-臭氧-电渗析工艺处理印染废水效能与机理研究[D]. 北京: 北京交通大学, 2020. [20] 侯瑞, 金鑫, 金鹏康, 等. 污水厂二级出水中难凝聚有机物的臭氧化特性[J]. 环境科学, 2018, 39(2): 844-851. [21] HE X, XI B, WEI Z, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 293-299. [22] IGLESIAS R, ORTEGA E, BATANERO G, et al. Water reuse in Spain: Data overview and costs estimation of suitable treatment trains[J]. Desalination, 2010, 263(1/2/3): 1-10. [23] 孙巍, 赵红兵. 武汉市黄孝河合流制溢流强化处理设施工艺设计[J]. 中国给水排水, 2022, 38(10): 101-105.