-
水力压裂技术是低渗透油藏及非常规油气开发的主要手段[1-4]。压裂过程中产生的压裂返排液含有油、酚类、甲醛、胍胶等多种有害物质[5],组分复杂,乳化程度高,稳定性强,处理难度大[6],若不能经有效处理而排放或回注地层,会对环境造成严重污染和破坏[7-9]。研究人员多采用物理法、化学法、生物法的联合工艺来处理压裂返排液[10-12],传统的处理方法普遍存在处理工艺流程长、设备多等问题,且所加入的化学药剂也容易造成二次污染。
相较于传统处理方法,电化学方法具有环保、反应条件适中、降解效率高等特点,已成为新兴的研究方向。樊玉新等[13]研究了电絮凝预处理+电化学氧化工艺处理压裂返排液,处理后耗氧有机污染物(以COD计)的浓度降至80 mg·L−1以下。孟宣宇等[14]考察了各操作条件对电絮凝处理效果的影响,确定最佳条件为反应时间60 min,电流密度10.0 mA·cm−2,极板间距3 cm,pH=7。王啸等[15]采用絮凝预处理+电絮凝氧化组合法处理海上压裂返排废水,处理后污水COD去除率达到85.9%。吴磊等[16]通过电絮凝电化学氧化-臭氧氧化耦合处理技术去除压裂返排液中的总有机碳(TOC),在不分室和分室情况下TOC去除率分别为80%和95%。以上研究对于电化学处理压裂返排液具有重要意义,但多集中在工艺参数的优化[17-20]和处理效率的提升方面,对电化学处理油田压裂返排液的机理研究则较少。
本研究采用电絮凝和电化学氧化方法处理压裂返排液,采用响应面法对电化学处理过程进行拟合,并分析相关因素对COD去除效果的影响;通过探究COD去除效果与反应时间的关系研究电化学法处理压裂返排液的反应动力学;通过Al-Ferron 逐时络合比色法和自由基淬灭实验,分析了电化学处理过程中COD的去除机理;研究了电化学反应前后极板表面的变化以及影响极板钝化的因素,以期为电化学技术处理油田压裂返排液的工业化应用提供参考。
油田压裂返排液的电化学处理
Electrochemical treatment of oilfield fracturing flowback fluid
-
摘要: 为探究电絮凝和电化学氧化法处理油田压裂返排液的机理,采用响应面法拟合了反应过程,考察了电化学反应动力学、活性物质以及电极板的形貌和成分的变化。结果表明,电絮凝和电化学氧化法的响应面模型相关性显著,精确度和可信度均在合理范围内,在最优实验条件下其对应的COD去除率分别可达88.2%和100.0%;压裂返排液经电絮凝和电化学氧化处理后去除COD的动力学分别适用于零级和一级动力学模型,反应速率常数分别为4.49 mg·(L·min)−1和0.005 4 min−1;电絮凝和电化学氧化处理压裂返排液起主要作用的活性物质分别是OH·和O2·−;电絮凝反应后,阳极和阴极表面分别附有碳酸钙和絮体有机物,电化学氧化反应后,阳极和阴极表面分别覆盖着致密的有机污染物和钙镁碳酸盐。Abstract: To investigate the mechanism of electrocoagulation and electrochemical oxidation methods treating oilfield fracturing backflow fluid, response surface methodology was used to fit the reaction process, and the electrochemical reaction kinetics, active substances, and changes in the morphology and composition of electrode plates were studied. The results showed that the correlation between the response surface models of electrocoagulation and electrochemical oxidation methods was significant, and the accuracy and reliability were in a reasonable range. Under the optimal experimental conditions, their COD removal rates could reach 88.16% and 100.00%, respectively. The COD removal kinetics for fracturing flowback fluid after electrocoagulation and electrochemical oxidation treatment were applicable to the zero order and first order kinetic models, respectively, and the reaction rate constant were 4.49 mg·L−1·min−1 and 0.005 4 min−1 , respectively. The active substances that played a major role in the treatment of fracturing backflow fluid by electrocoagulation and electrochemical oxidation were OH· and O2·− , respectively. After the electrochemical reaction, the electrocoagulation anode and cathode were coated with calcium carbonate and flocculent organic matter on the surface, respectively, while the electrochemical oxidation anode and cathode surfaces were covered with dense organic pollutants and calcium magnesium carbonate, respectively.
-
表 1 响应面实验设计因素水平和编码
Table 1. Factor level and code for response surface experimental design
变量 因素 电流密度
(A)/(mA·cm−2)极板间距
(B)/cm电解时间
(C)/min−1 1 2 20 0 5.5 3 40 1 10 4 60 表 2 电絮凝处理的响应面结果
Table 2. Response surface results of electrocoagulation treatment
序号 X1 X2 X3 COD去除率/% 1 −1 −1 0 63.2 2 1 −1 0 75.6 3 −1 1 0 59.7 4 1 1 0 70.3 5 −1 0 −1 52.0 6 1 0 −1 69.5 7 −1 0 1 67.4 8 1 0 1 74.7 9 0 −1 −1 58.2 10 0 1 −1 43.8 11 0 −1 1 75.0 12 0 1 1 54.7 13 0 0 0 69.8 14 0 0 0 69.2 15 0 0 0 70.3 注1:Y1 = 0.697 7+0.059 7A − 0.054 4B+0.060 4C − 0.004 5AB − 0.025 5AC − 0.014 8BC+0.027A2 − 0.052 7B2 − 0.065 7C2。 表 3 电絮凝回归方程的方差分析
Table 3. Analysis of variance for the regression equation of electrocoagulation
来源 平方和 自由度 均方和 F P 模型 0.114 0 9 0.012 7 6.95 0.023 A 0.028 6 1 0.028 6 15.66 0.010 8 B 0.023 7 1 0.023 7 12.97 0.015 5 C 0.029 2 1 0.029 2 15.99 0.010 3 AB 0.000 1 1 0.000 1 0.044 4 0.841 4 AC 0.002 6 1 0.002 6 1.43 0.285 9 BC 0.009 0 1 0.009 0 0.477 3 0.520 4 A2 0.002 7 1 0.002 7 1.48 0.277 9 B2 0.010 3 1 0.010 3 5.63 0.063 8 C2 0.015 9 1 0.015 9 8.74 0.031 6 残差 0.009 1 5 0.001 8 失拟项 0.009 1 3 0.003 0 纯误差 0.000 1 2 0 表 4 电化学氧化处理的响应面结果
Table 4. Response surface results of electrochemical oxidation treatment
序号 X1 X2 X3 COD去除率/% 1 −1 −1 0 62.0 2 1 −1 0 97.9 3 −1 1 0 62.4 4 1 1 0 94.4 5 −1 0 −1 59.4 6 1 0 −1 81.8 7 −1 0 1 78.9 8 1 0 1 96.1 9 0 −1 −1 62.9 10 0 1 −1 67.0 11 0 −1 1 100.0 12 0 1 1 78.3 13 0 0 0 100.0 14 0 0 0 100.0 15 0 0 0 95.9 注2:Y2=0.985 3+0.134 4A − 0.025 9B+0.102 8C − 0.009 7AB − 0.013 0AC − 0.064 5BC -0.087 3A2 − 0.107 3B2 − 0.108 5C2。 表 5 电化学氧化回归方程的方差分析
Table 5. Analysis of variance for the regression equation of electrochemical oxidation
来源 平方和 自由度 均方和 F P 模型 0.351 1 9 0.039 0 11.88 0.007 0 A 0.144 5 1 0.144 5 43.98 0.001 2 B 0.005 4 1 0.005 4 1.63 0.257 7 C 0.084 5 1 0.084 5 25.71 0.003 9 AB 0.000 4 1 0.000 4 0.115 8 0.747 5 AC 0.000 7 1 0.000 7 0.205 8 0.669 1 BC 0.016 6 1 0.016 6 5.07 0.074 2 A2 0.028 1 1 0.028 1 8.56 0.032 8 B2 0.042 5 1 0.042 5 12.94 0.015 6 C2 0.043 5 1 0.043 5 13.24 0.014 9 残差 0.016 4 5 0.003 3 失拟项 0.015 3 3 0.005 1 纯误差 0.001 1 2 0.000 6 表 6 电化学处理压裂返排液的反应速率常数和动力学方程式
Table 6. Reaction rate constant and kinetic equation of treating fracturing flowback fluid by electric flocculation and electrochemical oxidation
处理方法 反应速率常数k 动力学方程式 R2 电絮凝 4.49 mg·(L·min)−1 cCOD = −4.49t+1253.6 0.935 8 电化学氧化 0.005 4 min−1 ln cCOD = −0.0054t+6.433 0.773 7 表 7 电化学法处理前后有机物成分变化
Table 7. Changes in organic matter composition before and after electrochemical treatment
水样 主要成分 压裂返排液 C9H20O2Si、C13H14OS3、C14H22O、C14H29I、C15H32、C16H34、C17H36、C18H37I、C19H40C20H41I、C26H54、C29H60、C32H66 电絮凝处理后 C10H16O2、C22H13NO4 电化学氧化处理后 C5H10N6、C6H14O、C6H13Cl、C8H7F3O3S2、C9H14O2、C12H12F6O2、C22H13NO4 表 8 电絮凝阳极极板的EDS分析
Table 8. EDS analysis of electroflocculation anode plate
电絮凝阳极极板 电絮凝阴极极板 元素 质量比/% 原子百分比/% 元素 质量比/% 原子百分比/% C 49.75 66.25 O 49.04 60.55 Al 39.59 23.47 C 8.63 14.18 O 10.11 10.11 Ca 26.55 13.08 Ca 0.16 1.06 Na 8.62 7.41 Fe 0.08 0.11 Mg 2.92 2.37 表 9 电化学氧化阳极极板的EDS分析
Table 9. EDS analysis of electrochemical oxidation anode plate
电化学氧化阳极极板 电化学氧化阴极极板 元素 质量比/% 原子百分比/% 元素 质量比/% 原子百分比/% O 21.90 40.97 O 46.45 56.93 Ti 54.33 33.96 C 14.64 23.91 C 6.93 17.27 Ca 28.64 14.01 Ru 12.06 3.57 Mg 2.81 2.26 S 1.51 1.41 Na 1.95 1.66 -
[1] 严志虎, 戴彩丽, 赵明伟, 等. 压裂返排液处理技术研究与应用进展[J]. 油田化学, 2015, 32(3): 444-445. [2] KHAIR E, ZHANG S, MA S, et al. Performance and application of new anionic D3F-AS05 viscoelastic fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2011, 78(1): 131-138. doi: 10.1016/j.petrol.2011.05.011 [3] GEETANJALI C, KEKA O, CH. V. A novel and cleaner bio-polymer Gum Karaya-based Silica nano-composite fracturing fuid for high-temperature application[J]. Journal of Petroleum Exploration and Production Technology (2021) 11: 3785–3795. [4] HAO H, HUANG X, GAO C, et al. Application of an integrated system of coagulation and electro-dialysis for treatment of wastewater produced by fracturing[J]. Desalination and Water Treatment, 2015, 55(8): 2034-2043. doi: 10.1080/19443994.2014.930700 [5] 薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3): 24-29. [6] LIU D, FAN M, YAO L, et al. A new fracturing fluid with combination of single phase microemulsion and gelable polymer system[J]. Journal of Petroleum Science and Engineering, 2010, 73(3/4): 267-271. [7] 李兰, 杨旭, 杨德敏. 油气田压裂返排液治理技术研究现状[J]. 环境工程, 2011, 29(4): 54-56,70. [8] 叶春松, 郭京骁, 周为, 等. 页岩气压裂返排液处理技术的研究进展[J]. 化工环保, 2015, 35(1): 21-26. [9] 杨博丽, 张勉, 徐迎新. 电絮凝处理胍胶压裂返排废水实验研究[J]. 水处理技术, 2019, 45(1): 38-39. [10] 王顺武, 赵晓非, 李子旺, 等. 油田压裂返排液处理技术研究进展[J]. 化工环保, 2016, 36(5): 494. [11] 李健, 赵立志, 刘军, 等. 压裂返排废液达标排放的实验研究[J]. 油气田环境保护, 2002, 12(3): 26-28. [12] 杨志刚, 魏彦林, 吕雷, 等. 页岩气压裂返排废水回用处理技术研究与应用[J]. 天然气工业, 2015, 35(5): 131-137. [13] 樊玉新, 张海兵, 黄伟强, 等. 电化学工艺处理油田聚合物型压裂返排液[J]. 工业水处理, 2022, 42(10): 139-145. [14] 孟宣宇, 朱营莉, 林雯杰, 等. 页岩气压裂返排液电絮凝处理技术研究[J]. 工业水处理, 2017, 37(11): 58-61. [15] 王啸, 冉玉莹, 刘长亮, 等. 海上油田压裂返排废水COD处理实验研究[J]. 应用化工, 2023, 52(5): 1329-1332. [16] 吴磊, 谷梅霞, 杨阳, 等. 页岩气田压裂返排液电化学臭氧耦合处理技术实验研究[J]. 辽宁化工, 2023, 52(5): 761-766. [17] 赵忠山. 压裂返排液对原油乳化液介电特性的影响研究[J]. 油气田地面工程, 2017, 36(6): 51-53. [18] 林啸, 姚媛元, 陈果. 胍胶压裂返排废水残渣净化处理技术[J]. 石油钻采工艺, 2016, 38(5): 689-692. [19] 刘宇程, 吴东海, 袁建梅, 等. 膜蒸馏处理页岩气井压裂返排废水[J]. 环境工程学报, 2017, 1(1): 48-54. [20] 蒋继辉, 冀忠伦, 任小荣, 等. 聚合硅酸铝铁絮凝剂处理油井压裂废水[J]. 化工环保, 2013, 3(94): 363-366. [21] 张梦迪, 张维, 姚继明. 靛蓝废水无机盐环境下铝极板溶解与电化学行为分析[J]. 精细化工, 2023, 40(5): 1124-1126. [22] MONTEAGUDO J, DURAN A, SAN M, et al. Roles of different intermediate active species in the mine-ralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process[J]. Applied Catalysis B-Environmental, 2011, 106: 242-249. [23] HWANG S, HHLING S, KO S. Fenton-like degradation of MTBE: Effect if iron counter anion and radical scavenger[J]. Chemosphere, 2010, 78: 563-568. doi: 10.1016/j.chemosphere.2009.11.005 [24] XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-Chlorphenol[J]. Environmental Science & Technology, 2012, 46: 10145-10153. [25] LI G, WONG K, ZHANG X, et al. Deradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species[J]. Chemosphere, 2009, 76(9): 1185-1191. doi: 10.1016/j.chemosphere.2009.06.027 [26] ZHANG X, SUN D, LI G, et al. Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 199(2-3): 311-315. doi: 10.1016/j.jphotochem.2008.06.009 [27] FERNANDES A, PACHECO M, CIRIACO L, et al. Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future[J]. Applied Catalysis B: Environmental. 2015, 176-177: 183-200. [28] NICOT J, SCANLON B, REEDY R, et al. Source and fate of hydraulic fracturing water in the Barnett Shale: A historical perspective[J]. Environmental Science & Technology, 2014, 48(4): 2464-2471. [29] XUE X, HANNA K, DESPAS C, et al. Effect of chelating agent on the oxidation rate of PCP in the magnetite/ H2O2 system at neutral pH[J]. Journal of Molecular Catalyst A:Chemical, 2009, 311: 29-35. doi: 10.1016/j.molcata.2009.06.016 [30] BUXTON G, GREENSTOCK C, HELMAN W, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17: 513-886. doi: 10.1063/1.555805 [31] 陈建孟, 潘伟伟, 刘臣亮. 电化学体系中羟基自由基产生机理与检测的研究进展[J]. 浙江工业大学学报, 2008, 36(4): 416-421. [32] 吴飞鹏, 蔡继业, 马淑媛, 等. 壳聚糖对超氧自由基的清除作用[J]. 高分子材料科学与工程, 2008, 24(8): 124-125. [33] ISTVAN I, ZSUZSANNA L, ANDRAS D, et al. Investigation of the photodecomposition of phenol in near-UVirradiatedaqueous TiO2 suspensions. I: Effect of charge-trappingspecies on the degradation kinetics[J]. Applied Catalysis A:General, 1999, 180: 25-33. doi: 10.1016/S0926-860X(98)00355-X [34] ANDREW B, THOMAS N, WILLEM H, et al. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition[J]. Free Radical Biology and Medicine, 2014, 70: 86-95. doi: 10.1016/j.freeradbiomed.2014.02.006