[1] |
严志虎, 戴彩丽, 赵明伟, 等. 压裂返排液处理技术研究与应用进展[J]. 油田化学, 2015, 32(3): 444-445.
|
[2] |
KHAIR E, ZHANG S, MA S, et al. Performance and application of new anionic D3F-AS05 viscoelastic fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2011, 78(1): 131-138. doi: 10.1016/j.petrol.2011.05.011
|
[3] |
GEETANJALI C, KEKA O, CH. V. A novel and cleaner bio-polymer Gum Karaya-based Silica nano-composite fracturing fuid for high-temperature application[J]. Journal of Petroleum Exploration and Production Technology (2021) 11: 3785–3795.
|
[4] |
HAO H, HUANG X, GAO C, et al. Application of an integrated system of coagulation and electro-dialysis for treatment of wastewater produced by fracturing[J]. Desalination and Water Treatment, 2015, 55(8): 2034-2043. doi: 10.1080/19443994.2014.930700
|
[5] |
薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3): 24-29.
|
[6] |
LIU D, FAN M, YAO L, et al. A new fracturing fluid with combination of single phase microemulsion and gelable polymer system[J]. Journal of Petroleum Science and Engineering, 2010, 73(3/4): 267-271.
|
[7] |
李兰, 杨旭, 杨德敏. 油气田压裂返排液治理技术研究现状[J]. 环境工程, 2011, 29(4): 54-56,70.
|
[8] |
叶春松, 郭京骁, 周为, 等. 页岩气压裂返排液处理技术的研究进展[J]. 化工环保, 2015, 35(1): 21-26.
|
[9] |
杨博丽, 张勉, 徐迎新. 电絮凝处理胍胶压裂返排废水实验研究[J]. 水处理技术, 2019, 45(1): 38-39.
|
[10] |
王顺武, 赵晓非, 李子旺, 等. 油田压裂返排液处理技术研究进展[J]. 化工环保, 2016, 36(5): 494.
|
[11] |
李健, 赵立志, 刘军, 等. 压裂返排废液达标排放的实验研究[J]. 油气田环境保护, 2002, 12(3): 26-28.
|
[12] |
杨志刚, 魏彦林, 吕雷, 等. 页岩气压裂返排废水回用处理技术研究与应用[J]. 天然气工业, 2015, 35(5): 131-137.
|
[13] |
樊玉新, 张海兵, 黄伟强, 等. 电化学工艺处理油田聚合物型压裂返排液[J]. 工业水处理, 2022, 42(10): 139-145.
|
[14] |
孟宣宇, 朱营莉, 林雯杰, 等. 页岩气压裂返排液电絮凝处理技术研究[J]. 工业水处理, 2017, 37(11): 58-61.
|
[15] |
王啸, 冉玉莹, 刘长亮, 等. 海上油田压裂返排废水COD处理实验研究[J]. 应用化工, 2023, 52(5): 1329-1332.
|
[16] |
吴磊, 谷梅霞, 杨阳, 等. 页岩气田压裂返排液电化学臭氧耦合处理技术实验研究[J]. 辽宁化工, 2023, 52(5): 761-766.
|
[17] |
赵忠山. 压裂返排液对原油乳化液介电特性的影响研究[J]. 油气田地面工程, 2017, 36(6): 51-53.
|
[18] |
林啸, 姚媛元, 陈果. 胍胶压裂返排废水残渣净化处理技术[J]. 石油钻采工艺, 2016, 38(5): 689-692.
|
[19] |
刘宇程, 吴东海, 袁建梅, 等. 膜蒸馏处理页岩气井压裂返排废水[J]. 环境工程学报, 2017, 1(1): 48-54.
|
[20] |
蒋继辉, 冀忠伦, 任小荣, 等. 聚合硅酸铝铁絮凝剂处理油井压裂废水[J]. 化工环保, 2013, 3(94): 363-366.
|
[21] |
张梦迪, 张维, 姚继明. 靛蓝废水无机盐环境下铝极板溶解与电化学行为分析[J]. 精细化工, 2023, 40(5): 1124-1126.
|
[22] |
MONTEAGUDO J, DURAN A, SAN M, et al. Roles of different intermediate active species in the mine-ralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process[J]. Applied Catalysis B-Environmental, 2011, 106: 242-249.
|
[23] |
HWANG S, HHLING S, KO S. Fenton-like degradation of MTBE: Effect if iron counter anion and radical scavenger[J]. Chemosphere, 2010, 78: 563-568. doi: 10.1016/j.chemosphere.2009.11.005
|
[24] |
XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-Chlorphenol[J]. Environmental Science & Technology, 2012, 46: 10145-10153.
|
[25] |
LI G, WONG K, ZHANG X, et al. Deradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species[J]. Chemosphere, 2009, 76(9): 1185-1191. doi: 10.1016/j.chemosphere.2009.06.027
|
[26] |
ZHANG X, SUN D, LI G, et al. Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2008, 199(2-3): 311-315. doi: 10.1016/j.jphotochem.2008.06.009
|
[27] |
FERNANDES A, PACHECO M, CIRIACO L, et al. Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future[J]. Applied Catalysis B: Environmental. 2015, 176-177: 183-200.
|
[28] |
NICOT J, SCANLON B, REEDY R, et al. Source and fate of hydraulic fracturing water in the Barnett Shale: A historical perspective[J]. Environmental Science & Technology, 2014, 48(4): 2464-2471.
|
[29] |
XUE X, HANNA K, DESPAS C, et al. Effect of chelating agent on the oxidation rate of PCP in the magnetite/ H2O2 system at neutral pH[J]. Journal of Molecular Catalyst A:Chemical, 2009, 311: 29-35. doi: 10.1016/j.molcata.2009.06.016
|
[30] |
BUXTON G, GREENSTOCK C, HELMAN W, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17: 513-886. doi: 10.1063/1.555805
|
[31] |
陈建孟, 潘伟伟, 刘臣亮. 电化学体系中羟基自由基产生机理与检测的研究进展[J]. 浙江工业大学学报, 2008, 36(4): 416-421.
|
[32] |
吴飞鹏, 蔡继业, 马淑媛, 等. 壳聚糖对超氧自由基的清除作用[J]. 高分子材料科学与工程, 2008, 24(8): 124-125.
|
[33] |
ISTVAN I, ZSUZSANNA L, ANDRAS D, et al. Investigation of the photodecomposition of phenol in near-UVirradiatedaqueous TiO2 suspensions. I: Effect of charge-trappingspecies on the degradation kinetics[J]. Applied Catalysis A:General, 1999, 180: 25-33. doi: 10.1016/S0926-860X(98)00355-X
|
[34] |
ANDREW B, THOMAS N, WILLEM H, et al. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition[J]. Free Radical Biology and Medicine, 2014, 70: 86-95. doi: 10.1016/j.freeradbiomed.2014.02.006
|