[1] |
孙坚伟. 紫外/氯胺消毒对供水系统中微生物数量分布的影响[J]. 中国给水排水, 2022, 38(9): 39-43.
|
[2] |
员建, 罗小平, 崔月娟, 等. 氯胺消毒对三卤甲烷生成影响因素研究[J]. 环境污染与防治, 2014, 36(7): 9-13. doi: 10.3969/j.issn.1001-3865.2014.07.003
|
[3] |
马蓉, 吕锡武, 窦月芹. 氯胺消毒对管网中消毒副产物的控制[J]. 水处理技术, 2006, 32(7): 67-69.
|
[4] |
刘汝鹏, 郝玉友, 罗从伟, 等. 紫外/一氯胺降解水中氯霉素的性能与机理研究[J]. 中国给水排水, 2021, 37(9): 51-56.
|
[5] |
韩雪, 孙坚伟, 张力, 等. 紫外氯胺组合消毒供水系统中病毒微生物的分布特征[J]. 环境科学, 2021, 42(2): 860-866.
|
[6] |
张馨怡, 魏东斌, 杜宇国. 紫外-氯联合消毒处理及副产物生成特征研究进展[J]. 环境化学, 2018, 37(9): 1950-1560.
|
[7] |
IBANEZ M, GRACIA-LOR E, BIJLSMA L, et al. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone[J]. Journal of Hazardous Materials, 2013, 260: 389-398. doi: 10.1016/j.jhazmat.2013.05.023
|
[8] |
朱永娟, 李健鹏, 孔德挺, 等. 紫外/氯胺高级氧化法降解水中四环素的研究[J]. 长春师范大学学报, 2022, 41(4): 74-78.
|
[9] |
LU Z D, LING Y C, WANG X L, et al. Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process[J]. Science of the Total Environment, 2022, 832: 154850. doi: 10.1016/j.scitotenv.2022.154850
|
[10] |
YE B, LIU Z Y, ZHU X Q, et al. Degradation of atrazine (ATZ) by ammonia/chlorine synergistic oxidation process[J]. Chemical Engineering Journal, 2021, 415: 128841. doi: 10.1016/j.cej.2021.128841
|
[11] |
CHEN M, BLANKENSHIP R E. Expanding the solar spectrum used by photosynthesis[J]. Trends in Plant Science, 2011, 16(8): 427-431. doi: 10.1016/j.tplants.2011.03.011
|
[12] |
CHENG S S, ZHANG X R, SONG W H, et al. Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine[J]. Science of the Total Environment, 2019, 682: 629-638. doi: 10.1016/j.scitotenv.2019.05.184
|
[13] |
HUA Z C, GUO K H, KONG X J, et al. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen[J]. Water Research, 2019, 150: 77-85. doi: 10.1016/j.watres.2018.11.041
|
[14] |
LASZAKOVITS J R, BENG S M, ANDERSON B G, et al. p-Nitroanisole/Pyridine and p-Nitroacetophenone/Pyridine actinometers revisited: Quantum yield in comparison to ferrioxalate[J]. Environmental Science & Technology Letters, 2017, 4(1): 11-14.
|
[15] |
ANIPSITAKIS G P, DIONYSIOU D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B:Environmental, 2004, 54(3): 155-163. doi: 10.1016/j.apcatb.2004.05.025
|
[16] |
XIAO Y J, ZHANG L F, YUE J Q, et al. Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes[J]. Water Research, 2015, 75: 259-269. doi: 10.1016/j.watres.2015.02.044
|
[17] |
CHEN C Y, WU Z H, HUA Z C, et al. Mechanistic and kinetic understanding of micropollutant degradation by the UV/NH2Cl process in simulated drinking water[J]. Water Research, 2021, 204: 117569. doi: 10.1016/j.watres.2021.117569
|
[18] |
LEE Y, VON GUNTEN U. Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment[J]. Water Research, 2012, 46(19): 6177-6195. doi: 10.1016/j.watres.2012.06.006
|
[19] |
WU Z H, CHEN C Y, ZHU B Z, et al. Reactive nitrogen species are also involved in the transformation of micropollutants by the UV/monochloramine process[J]. Environmental Science & Technology, 2019, 53(19): 11142-1152.
|
[20] |
XIANG Y Y, FANG J Y, SHANG C I. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process[J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069
|
[21] |
BU L J, ZHOU S Q, ZHU S M, et al. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation[J]. Water Research, 2018, 146: 288-297. doi: 10.1016/j.watres.2018.09.036
|
[22] |
焦中志, 陈忠林, 陈杰, 等. 氯胺消毒对消毒副产物的控制研究[J]. 哈尔滨工业大学学报, 2005, 37(11): 1486-1488.
|
[23] |
焦中志, 陈忠林, 卢伟强, 等. 氯胺消毒对三卤甲烷类消毒副产物的控制研究[J]. 环境污染治理技术与设备, 2006, 7(6): 43-45.
|
[24] |
陈杰, 李星, 杨艳玲, 等. 预氯胺化控制消毒副产物技术研究[J]. 中国给水排水, 2005, 21(7): 5-8.
|
[25] |
ZHANG Y Q, XIAO Y J, ZHONG Y, et al. Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity[J]. Chemical Engineering Journal, 2019, 372: 420-428. doi: 10.1016/j.cej.2019.04.160
|